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Abstract—Modern browser technologies allow running highly
portable and usable complex applications. However, the inability
to access all the operating system features may limit their
features or performance when compared to native software in
certain scenarios. We investigate the design of peer-to-peer (P2P)
networks of interconnected browsers to improve applications
interconnecting users, such as videotelephony, messaging and
gaming. Although peer-to-peer protocols are well-established in
the literature, known designs and implementations cannot be
executed on browsers due to constraints of browser environ-
ments. We propose WebDHT, a webassembly library for creating
P2P networks among browsers which offers topic-based peer-
discovery features and integrates usable identity authentication
mechanisms. WebDHT implements a variant of the Kademlia
protocol based on distributed hash tables (DHT) adapted to
support WebRTC protocol. WebDHT requires a native server
to be available only for network bootstrap, but leverages exist-
ing browsers connected to the DHT to decentralize WebRTC
signaling backends. We propose an open-source implementation
and two demonstrative applications for users messaging and
multimedia streaming, and analyze limitations and future work
for designing better browser-compatible P2P networks.

Index Terms—WebRTC, DHT, Kademlia

I. INTRODUCTION

A large number of modern Internet applications are im-
plemented as browser-compatible applications, that is, they
are written through browser technologies (JavaScript and
WebAssembly-compliant programming languages) and are
compliant with browsers APIs. Advantages over native soft-
ware include cross-compatibility over multiple platforms and
operating systems, no installation procedures, easier integra-
tion with the Web ecosystem, and improved security thanks
to browsers sandboxes. However, their inability to access all
the operating system features may also limit their performance
and capabilities in certain scenarios.

We focus on applications which enable communications
among users, such as videotelephony, messaging and gaming
applications, and we investigate the possibility of designing a
browser-compatible application where user browsers commu-
nicate with each others in a decentralized fashion through a
peer-to-peer network. Historically, Web protocols have been
based on centralized paradigms where browsers can exchange
data among each other through centralized relay servers
through HTTP and WebSockets. The more recent WebRTC
protocol, which is mainly known for low-latency multimedia
communications, allows browsers to establish peer-to-peer

connections to directly exchange arbitrary data. However, es-
tablishing WebRTC connections still requires adopting signal-
ing channels which are typically deployed through centralized
servers, thus falling back to a centralized design.

We propose WebDHT, a browser-compatible library that
creates a peer-to-peer network of browser nodes, enabling
decentralized peer discovery and peer-to-peer communications
while minimizing reliance on centralized servers, sharing
operations load and data on all nodes. WebDHT is designed
with scalability and usability as core objectives, and is meant
to be used as a signaling layer by multiple Web applications.
By sharing signaling cost, applications using WebDHT can
minimize deployment costs while maximizing service uptime.
WebDHT can be considered as a variant of the Kademlia
protocol [1]: it is based on Distributed Hash Tables (DHT) but
modifies the original protocol to support browser technologies
and Web protocols, including support of connection-oriented
protocols instead of datagram-oriented protocols due to re-
liance on WebRTC to establish peer-to-peer communications.
Although peer-to-peer networks are considered quite estab-
lished in the literature [1] and many mature implementations
exist [2], [3], none of them consider constraints related to the
execution within browser environments.

We propose a prototype implementation of WebDHT which
can be used both as a high-performance server and as a
WebAssembly-compliant library written in RUST that offers
high performance and exposes a JavaScript API. The design
of WebDHT is modular over its transport protocol, allowing
easier testing and debugging. The project has a well-defined
high-load behavior, is designed to be resistant to attack vectors
that are typical of peer-to-peer networks and to overcome
many technological issues related to current browsers. We
also propose two applications to showcase how a real-world
Javascript Web application can use WebDHT to discover peers.
The first is a simple room-based chat, the second is a screen-
sharing and live multimedia sharing application, useful to
synchronize media playback in a group of users.

The remainder of the paper is as follows. Section II de-
scribes base knowledge. Section III and IV present the high-
level and detailed designs of WebDHT. Section V describes
technical details of the implementation. Section VI proposes a
discussion related to technologies, performance and security.
Section VII compares the proposal with related work.



II. BASE KNOWLEDGE

A. Kademlia DHT

A Distributed Hash Table (DHT) can be modeled as a hash
table deployed within a distributed network. It allows each
node to associate values to keys, and to retrieve them efficiently
given the key. Values are bitstrings of arbitrary size and each
key is a n-bit bitstring, where n is a security parameter. We
denote the key space as K := {0, 1}n. On average, key-values
entries are distributed uniformly among all the nodes of the
network. Each node is identified by ID ∈ K and maintains a
set of entries associated to keys that are closer to its identifier
with regard to the identities of the other connected nodes. The
distance is computed through a metric which is specific for
each DHT protocol. Kademlia [1] uses the XOR operation as
a distance metric. To add a new value in association to a key,
a node must query the DHT network to obtain the set of node
identifiers that are closer to the key, and ask them to store
the value. The number of nodes that will be asked to store the
value is a system-wise parameter. Any node can retrieve nodes
that are closer to a target ID and the associated addresses to
contact them. To this aim, each node maintain a so-called k-
bucket routing table which can be modeled as a tree over the
space of the identifiers, and stores more information regarding
identifiers that are closer to its own. In Kademlia, each node
ÎD maintains an array of n buckets of size k, and each bucket
i ∈ [1, . . . , n] includes at most k identifiers ID that are at a
distance d = (ÎD ⊕ ID) such that 2i−1 ≤ d < 2i. Thus, each
bucket i includes all the identifiers that share i leading bits,
and a larger number of identifiers must be discarded for greater
values of i. Although the original Kademlia paper [1] proposes
a dynamic strategy which adapt the sizes of the buckets at
runtime, popular Kademlia implementations adopt a simplified
static approach which we also adopt in this paper.

B. WebRTC

WebRTC is a protocol for low-latency audio/video commu-
nications with a focus on Web browsers. It is very popular
for interactive communications among users and is becoming
increasingly adopted also for real-time streaming. It supports
both direct peer-to-peer communications between browsers
and communications relayed through intermediate servers,
but also supports data-only channels which are typically
used for communicating auxiliary information. Its protocol
stack includes the Real Time Protocol (RTP) based on UDP,
and supports tuning of packet loss for better performance-
reliability trade-offs. Figure 1 shows how a peer-to-peer We-
bRTC connection channel is opened through a pre-existing
signaling channel. The initiator of the connection, namely
the caller, must send an offer message through the signaling
channel to a recipient, namely the callee, which must respond
with an answer message. Offer and answer messages include
information to negotiate the new channel parameters, such
as IP addresses, and UDP and TCP ports, encoded through
the Session Description Protocol (SDP). The establishment of
the channel is operated by using the Interactive Connectivity
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Fig. 1. WebRTC handshake via an abstract signaling channel

Establishment (ICE) protocol to handle devices potentially
separated by Network Address Translation (NAT) mecha-
nisms. The protocol establishes secure communication channel
by using self-generated x509 certificates, which cannot be
accessed by browser APIs except for their fingerprint. We
denote as signaling backend the mechanism used to implement
the signaling channel, which is outside the scope of the
standard. Typical signaling backends include communications
relayed by a centralized Web server through HTTP or Web
Sockets. One of the most important design choices of Web-
DHT is to minimize reliance on centralized servers by allowing
existing WebRTC connections among nodes to act as signaling
backends by leveraging existing WebRTC channels.

C. WebAssembly

WebAssembly is a standard binary instruction format for
executable programs released in 2017 to allow execution of
very efficient programs on browsers. Native programming lan-
guages like C and Rust can be compiled to WebAssembly, al-
lowing re-use on multiple platforms. WebAssembly programs
are also able to access features of the native operating system
through the Web Assembly System Interface (WASI). The
proposed prototype implementation of the WebDHT protocol
is implemented in Rust, a memory-safe strongly-typed native
language that has official support for WebAssembly. This
decision has been taken to share most of the code between
a browser client and an optimizable native server.

III. WEBDHT DESIGN OVERVIEW

WebDHT builds a network of interconnected peer-to-peer
nodes, where each node can be either a native node or a
browser node. Native nodes execute as native programs on a
machine operating system. Browser nodes execute in a browser
environment and are more restricted in terms of allowed oper-
ations, available APIs, and other constraints related to browser
technologies and Web protocols. Any node can connect to a
browser node only through a common neighbor, which can be
either a native or a browser node. At bootstrap, a browser node
can interact only with native nodes with the HTTP protocol.
Later, the browser node can connect to another browser node
with the WebRTC protocol either via a browser or a native
node, which is used as signaling channel. WebDHT guarantees
high fault-tolerance because even in case of some neighbors
failures, nodes can continue operating through other neighbors
thanks to information distributed to many nodes of the DHT.
We design WebDHT as a middleware library to be used by
applications to manage data within the DHT and to open
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Fig. 2. Example of WebDHT communication with an out-of-band commu-
nication channel to distribute nodes identifiers

synchronous peer-to-peer communications with other nodes
connected to the network. To these aims, each node exposes
peer interfaces that can only be executed by other nodes after
establishing a mutually authenticated communication channel,
which guarantees protection against identity spoofing attacks
and consistency of operations on the DHT.

An application that uses WebDHT can use an out-of-band
channel to distribute its identifier and allow other nodes to
open new connections. An example related to a primary-
secondary communication paradigm is shown in Figure 2. To
ease peer discovery by applications, WebDHT also offers a
topic-based identity discovery mechanism tightly integrated
within the DHT. While identifiers are generated through a
probabilistic procedure (that is, the generation of the asym-
metric key pair), topics can be chosen arbitrarily. Thus, they
can be easily used by applications to implement user-friendly
discovery procedures (e.g., people communicating a topic
name via short messages) or to integrate peer discovery with
applications communication contexts (e.g., the label identify-
ing a chat room).

WebDHT adopts WebRTC to establish peer-to-peer commu-
nications among nodes, introducing multiple challenges with
regard to known peer-to-peer networks specifications.

Connection-oriented WebRTC communications. Modern
peer-to-peer networks based on DHTs typically rely on
datagram-oriented communication paradigms because they do
not need expensive features of connection-oriented communi-
cations. However, we are constrained by browser technologies,
and must comply to the connection-oriented paradigm of
WebRTC communications, which also requires intermediate
signaling channels.

Decentralization of signaling channels. WebDHT does not
leverage dedicated centralized signaling backends to handle
WebRTC signaling channel (see Section II-B). Instead, Web-
DHT allows any neighbor node to act as an intermediate
signaling node to establish new WebRTC connections. We call
these intermediate nodes as referral nodes. A native node can
act as a referral node for itself by offering an HTTP endpoint.
However, WebDHT must implement signaling channels on
connections opened between browser nodes, thus adopting
established WebRTC connections as signaling channels for
new WebRTC connections. This logic must be implemented

through browser technologies.
Main design traits that distinguish WebDHT from existing

DHTs include mechanisms to efficiently handle connections
life-cycle, taking into account that the maximum number of
active WebRTC connections on a browser is much lower than
that supported by a native operating system, and that even by
knowing the address of a browser node, opening a connection
first requires opening intermediate connections to common
neighbors in order to form a path, WebRTC connections are
used both for routing mechanisms and as transport protocols
for applications. To this aim, the WebDHT library implements
a hybrid approach for integrating connection pooling and
routing mechanisms that maintains both a minimal amount
of stable connections to efficiently operate routing mecha-
nisms within the decentralized network, while still allowing
to establish ephemeral connections for applications features.
Additional designs features include avoiding potential double
connections that may be established due to delays, handling
connections pooling to possibly re-use previously opened con-
nections, and cryptographic channel-bindings bind WebRTC
and DHT authentication mechanisms.

IV. WEBDHT PROTOCOL DETAILS

We describe notations in Section IV-A, setup operations
in Section IV-B, connection establishment in Section IV-C,
node peer interfaces in Section IV-D, library interfaces in
Section IV-E, topic-based operations in Section IV-F.

A. Parameters and notations
We denote the DHT key space as K := {0, 1}n, where n

denotes a security parameter of the system, a node identity as
ID ∈ K, a (cryptographic) collision-resistant hash function as
Hn (·) : {0, 1}∗ → {0, 1}n (e.g., a truncated SHA-2 or SHA-3
function). We model the local hash table of each node as an
associative array M := {K : {ID : V}} that maps each key
K ∈ K to an other associative array that maps identities ID to
values V ∈ {0, 1}∗, where ID tracks the node that published
value V. We denote the local routing table of each node as
R := {ID : conn}, which maps each identifier ID to an open
connection conn maintained by the WebDHT library. As in
Kademlia, given a target node ID, the routing table efficiently
returns the top-t IDs that are closer to ÎD, and stores different
amounts of entries depending on the distance between stored
identities and the node identity (see Section II-A). However,
our routing table distinguishes from that designed by Kademlia
because R associates IDs with open connections instead of
addresses. If an ID is stored within the routing table, then
there is always an open connection with the node identified
by ID. If a connection is closed, then the associated entry is
removed. Moreover, the routing table stores a limited amount
of entries and old entries may be discarded, thus involving
that old connections may be forcefully closed if they are not
currently used by the library.

B. Setup
Node setup refers to initialization operations of a node be-

fore connecting to the DHT. The node generates an asymmetric



key pair (sk, pk) and derives its ID from the public key pk as
ID← Hn (pk).

Network setup refers to operations for creating and running
a new WebDHT network. First, it is required to setup one
native node. If a public ICE server is not available, one or
multiple dedicated ICE servers may be deployed as well for
enabling NAT traversal features of WebRTC (see Section II-B).
For improved resiliency, other native nodes may be added
to the DHT through a node bootstrap procedure (see Sec-
tion IV-E). At least an address of a connected native node and
of an ICE server must be distributed to nodes that need to
participate in the WebDHT network.

C. WebRTC connection establishment

Contacting browser nodes within WebDHT requires estab-
lishing a WebRTC connection, which involves a caller node
that sends an offer through the signaling channel to a callee
node, which responds with an answer. Offer and answer
messages comply with the SDP specification, and include
connection-related information such as endpoint candidates.
For details on WebRTC see Section II-B.

The procedures required to establish a WebRTC connection
depends on the type of callee node and on the information
available to caller nodes.
• the first scenario involves a caller that is either a native

or browser node, that must connect to a callee that is a
native node, by knowing its IP address (or hostname);

• the second scenario involves a caller that is either a native
or browser node, that must connect to a callee that is
either a native or browser node, by only knowing its
identity ID within the WebDHT network.

We observe that traditional DHTs only involves the first
scenario, because all nodes can typically accept data from
other nodes by exposing an endpoint (e.g., a UDP listening
socket), and are known by their address(es).

In the first scenario, the callee can act as a referral for
itself. Indeed, native nodes can offer an HTTP endpoint as a
signaling channel to create a new WebRTC connection. Both
native and browser nodes can create an offer and send it
through an HTTP request to the native node. The request is
processed and an answer is returned as the body of the HTTP
response. Depending on security requirements, HTTPs can be
used as well without relevant modifications.

In the second scenario, the callee and the caller nodes
must have a common neighbor node (either native or browser)
which can act as a referral node. In this case, establishing a
new WebRTC connection to the callee node requires a proper
protocol to forward WebRTC signaling information and to
authenticate nodes. We describe this protocol by referring to
Figure 3, where a caller Node A connects to a callee Node
C via a common referral Node B. The protocol requires that
Node A knows the identity of Node C IDC , and that Node B
is a common neighbor of Node A and Node C, that is, there
exist established connections between Node A and Node B,
and between Node C and Node B.

Node A
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Node B
(referral)

Node C 
(callee)

WebRTC connection WebRTC connection

validate 
offer

validate 
answer

WebRTC connection

Signaling forwarding

WebDHT ID Authentication
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ICE
servers

gather
candidates

ICE
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Fig. 3. WebDHT protocol for connecting to a node by knowing its ID

The first phase of the protocol involves signaling forward-
ing. Node A creates a WebRTC offer with the collaboration
of known ICE servers, and asks Node B to forward the offer
to Node C. Node C receives the offer and interacts with
known ICE servers to produce an answer for Node A, which
is sent via Node B. To prevent misuse, this request-forwarding
protocol is only permitted for signaling. As an example, Node
B does not forward any other message from Node A to Node
C, and thus Node A must establish a direct connection to send
any other data or request to Node B.

After the first phase, Node A and Node C have established a
direct WebRTC connection. Thus, they have exchanged public
certificates used to secure the connection. Note that as for
the WebRTC standard (see Section II-B), these certificates
have been automatically generated by browsers and it is not
possible to use a PKI to authenticate them. Moreover, the
WebDHT library executed within browser environments can
only access their fingerprints. To establish the authenticity of
the certificates, Node A and Node C operate an additional
handshake procedure, denoted as WebDHT ID Authentication,
which uses the nodes identities as trust anchors. Within the
handshake, Node A knows identity IDC from the input of
the open channel procedure, and Node C knows identity
IDA from the offer received within the signaling forwarding
phase. We denote as cfA and cfC the actual fingerprints of
the certificates (locally accessed by Node A and Node C,
respectively), and cf ′A and cf ′C as the fingerprints of the
certificates received by Node C and Node A, respectively. If
the WebRTC connection has been established securely (e.g.,
there is no ongoing man-in-the-middle attack), cfA (cfC) and
cf ′A (cf ′C) are equal. The authentication procedure proceeds
independently for Node A and Node B, which must operate
analogous operations. The procedure operated by each node
can be considered as a challenge-response protocol to prove
possession of the WebDHT private key generated at setup
time (see Section IV-B), and uses the certificate fingerprint



as a challenge to verify that the endpoints of the WebRTC
connections are indeed Node A and Node C. For simplicity,
we only describe authentication of Node C at Node A. Node
C signs its certificate fingerprint by using its WebDHT private
key as σC = sign(skC , cfC) and sends it to Node A
together with its WebDHT public key pkC . Node A verifies
the authenticity of pkC by comparing it to the known identity
of Node C, as IDC == Hn (pkC). Then, it verifies the
authenticity of the known certificate fingerprint cf ′C against
the received signature as verify(pkC , cf

′
C , σC).

Managing double connections. A potential issue of using
WebRTC as a transport protocol for a DHT is that when
two peers want to communicate with each other they may
open communication channels almost simultaneously, possibly
opening two WebRTC connections (double connections) and
thus wasting resources. As the number of open connections in
browser environments is very limited, a WebDHT implementa-
tion let each peer to only accept the connection initiated by the
peer with the lower ID. This ensures that only one connection
between the peers is opened. To this aim, both peers must
check this condition and prevent having two connections
between each node.

D. Peer operations for connected nodes

Each node offers four RPC-like operations for nodes that
have previously connected via a valid transport protocol. In
the following, we denote as ĪD the identity of the caller
node that executes an operation, which is an information that
any operation can obtain from the connection context (see
Section IV-C above).

Routes retrieval R̃← prget(ID, t) returns a subset of the
node routing table R̃ = {ID} which includes identifiers of
known nodes that are closer to the given identifier ID within
the local routing table R, where t denotes the maximum size
of the set. If the node does not store any closer node, it returns
an empty set.

Value retrieval ({V}, {ĨD}) ← pvget(K, t) returns the
values {V} associated to a given key K stored within the
local hash table M , or the empty set if K is not within
M . Moreover, it executes proutes(K, t) to return nodes with
closer identifiers ĨD within R.

Value insertion pvinsert(K, V, TTL) inserts a key-value
entry (K, V) in the local hash table M for a maximum
expiration time equal to an input time-to-live (TTL). That is,
it stores a new entry ĪD : V associated to K within M . The
node behaves with a best-effort approach, as it will store the
value in the DHT if enough space remains, and may discard
the value before the expiration of the TTL if needed.

Value deletion {ĨD} ← pvdelete(K, t) deletes the entry
associated to key K and identifier ĪD, if exists. A node ĪD can
only delete values inserted in the DHT by itself. The operation
returns the set of identifiers {ĨD} of known nodes that are
closer to the given key K within the local routing table R,
where t denotes the maximum size of the set. If the node
does not store any closer node, it returns an empty set.

E. Library operations

We consider operations that can be executed by an appli-
cation running on a browser or native node which uses the
WebDHT library. We assume that all operations can access to
key pair (sk, pk) and node identity ĪD generated at setup time
(see Section IV-B), and can query ICE servers when necessary.

Node bootstrap wdht ← bootstrap(addresses) allows
an initialized node to join the WebDHT network. The node
must know one or multiple addresses associated with avail-
able native nodes and ICE servers. The node interacts with any
of the available native nodes as follows. The node generates
n dummy identities chosen at random within each bucket of
its routing table (let ĪD denote the node identity, the node
generates {IDi}i∈[1,...,n] such that 2i−1 ≤ (ĪD ⊕ IDi) < 2i).
The node searches for identifiers closer to each IDi on the
DHT via a wdht.nsearch(IDi) (see below). The operation
inserts all nodes queried throughout the execution of the
operation within the node routing table R. Moreover, all
intermediates nodes also acquire routing information about the
caller node ĪD when establishing connections. This procedure
ensures a probabilistic lookup complexity of O(logN) queries
for following lookups.

DHT nodes search R̃ ← wdht.nsearch(ÎD, t) returns
identities of the connected nodes R̃ = {ĨD} that are closer to
ÎD within the DHT. The operation uses an iterative approach.
In the first iteration, the node that executes the operation
retrieves up to t nodes ĨD that are closer to ÎD included in
its routing table R, establishes a new connection with each
of the nodes and queries each of them to get up to further t
closer nodes as connĨD.prget(ÎD, t). At the second iteration,
the returned nodes that are closer to the target ÎD are also
queried, and so on for the following iterations. The procedure
ends when the target identity ÎD is found or when queried
nodes do not return nodes that are closer to ÎD with regard
to the previous iteration. If ÎD exists, a connection with it is
established as well and inserted in the routing table.

DHT value search {V} ← wdht.vsearch(K, t) returns
values stored within the DHT associated to an input key K.
Its implementation can be considered as a variant of DHT
node search, but queried nodes that store values associated to
K return them to the requester. Given K, the operation looks
for the nodes with identifiers {ĨD} that are closer to K with an
iterative approach by leveraging the connĨD.pvget(K, t) peer
operation. If the queried nodes return nodes with identities
ĨD that are closer to the target K, they are queried on their
turn. Distinct values {V} potentially returned at each operation
are locally accumulated to be returned to the application.
The operation terminates as the node search operation, when
queried nodes do not return any closer node.

DHT value insertion wdht.insert(K, V, TTL) inserts a
key-value (K, V) entry within the DHT associated with a time-
to-live (TTL). Its execution involves the execution of node
search with input K as {ĨD} ← nsearch(K, t). Each node
ĨD is requested to insert the entry with the value insertion
peer operation connĨD.pvinsert(K, V, TTL). The value of t



determines the redundancy of the entry within the DHT.
DHT value deletion wdht.delete(K, t) deletes the entry

associated with key K and identifier ĪD within the DHT.
It represents a variant of DHT node search, where queries
to the nodes invoke the value deletion peer operation as
{ĨD} ← pvdelete(K, t), which deletes the given entry if it
exists within the hash table M of the queried node, and returns
closer nodes {ĨD} to be queried on their turn. The procedure
terminates when queried nodes do no return closer nodes. The
value of t may influence the number of iterations within the
procedure.

F. Topic-based identity advertise and discovery

Operations for identity advertise and discovery based on
topics are derived from primitive library operations described
in the previous Section IV-E, as follows.

DHT topic advertise wdht.advertise(T, meta, TTL) ad-
vertises the identity of the node that executes the operation
(ID) in association with topic T. The operation is imple-
mented by inserting identity ID and metadata meta as val-
ues associated to a key KT ← H (T), that is by executing
wdht.insert(KT, meta, TTL)).

DHT topic discovery {ĨD : meta} ← wdht.discover(T)
return identities associated with topic T by retrieving values
associated to a key KT ← H (T) within the DHT by executing
{ID : V} ← wdht.vsearch(KT) and by decoding each value V

as meta).
We observe that, when using a human-friendly string as

topic, it is advised to use a hierarchical naming con-
vention to support context-separation. As an example, an
app named appname created by example.com might use
com.example.appname.discovery.v1 to prevent conflicts with
other applications that use the same WebDHT instance. More-
over, since WebDHT adopts a best-effort approach to establish
the persistence of each entry within the DHT, periodic re-
publishing may be performed by applications even before the
given TTL. An example communication flow based on topic
advertise and discovery is shown in Figure 4. The example
shows a primary-secondary communication paradigm where
two nodes are able to establish a communication channel
by using a pre-shared topic, possibly known by users. The
example can be easily extended to other communication
paradigms among multiple nodes (e.g., a mesh network) by
letting the application discover all nodes associated to a topic
and establish a communication channel with each of them.

V. WEBDHT IMPLEMENTATION

We provide an implementation of WebDHT based on the
Rust programming language which supports both WebAssem-
bly and native programs1. We leverage async features of Rust
to offer a high-performance native node, but partially disable
them when compiling in WebAssembly environments due to
missing support for threads. As we show in Figure 5, the
project has been organized into multiple modules to satisfy

1https://github.com/SnowyCoder/wdht/tree/nca2022
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Fig. 5. WebDHT implementation organization

the following characteristics: to be able to compile different
portions of the source depending on the target environment
(browser or native nodes); to support multiple transport proto-
cols (WebRTC and HTTP); to allow efficient testing for com-
plex logic, potentially in simulated environment. The project
is organized in core modules, adapters and applications that
we describe in the following.

The core modules of the project are logic, webdht and web.
The logic module defines the DHT logic, implementing the
routing table and the storage layer. This layer is independent of
the transport protocols, but implements a lightweight dummy
transport layer that can be used for local simulations. The
webdht module provides a working WebDHT and can be
directly used by Rust projects. It wraps the logic module to add
a WebRTC transport layer and an HTTP client for bootstrap
operations. It also provides an HTTP endpoint that can be
used in native nodes for WebRTC signaling. The web module
provides a user-friendly API accessible from JavaScript code
in a browser environment. This module can be exported as a
WebAssembly NPM module.

The adapter modules allow conditional compilation depend-
ing on the target environment without affecting the complexity
of the code. The crypto module exports abstractions for crypto-
graphic operations to offer the best performance in both native
and browser environments. For browser targets, the module
wraps the WebCrypto API, achieving better performance than
WebAssembly implementations and reducing the size of the



binary distributed over the Web. For native targets, the module
uses the popular p256 [4] and sha2 [5] libraries. The wasync
module provides abstractions over asynchronous functions to
allow spawning of new tasks and async timeout. The wrtc
module provides a simplified WebRTC API. For browser
targets, it uses the standard Web APIs for WebRTC [6]. For
native targets, it uses the popular libdatachannel [7] library.
To the best of our knowledge, a WebAssembly-compatible
WebRTC client library is, to this day, missing in the open-
source ecosystem. Thus, we consider that this module could be
of independent interest and could be used by external projects
with few modifications.

Finally, our implementation includes applications for de-
ploying a WebDHT network and for demonstration purposes.
The native server module provides a standalone, config-
urable, high-performance minimal server implemented with
Rust which can be used to deploy a native node. This
is the only module that cannot be compiled into browser-
compatible WebAssembly as it requires native capabilities.
The simple chat module is a very simple Javascript application
to demonstrate the capabilities of WebDHT. It implements a
Web text chat for groups organized in rooms. The application
uses WebDHT as a peer-discovery mechanism. When the
application starts it allows to either join a random room or join
a room by specifying its name. Rooms are mapped to topics
within WebDHT for an easier access by people. Once joined,
the application creates a mesh network of WebRTC connec-
tions among all the other members of the room. The torrent
party module is a more complex Javascript application for
synchronizing media among a group of people. It implements
the same room management and mesh networking paradigm
of the simple chat, but allows users to leverage two features
for uploading a file or for screen sharing. The application
leverages the WebTorrent library to share it with other people
in the same room and, if possible, to stream as a HTML5
video element, synchronizing the playback time.

VI. ANALYSES AND DISCUSSIONS

A. Limits and issues related to browser technologies

WebDHT leverages WebRTC data channels, which are
much less popular than multimedia channels typically used for
audio/video calls. Thus, browser developers give lower priority
to related bugs and issues. During the project development
we found various bugs in every prominent browser engine.
A major issue in Chromium-based browser is the very limited
number of possible WebRTC connections. Currently, after 500
connections, Chromium-based browsers fail at creating new
connections [8]. This puts a hard limit on the degree of a
WebDHT browser node and might also deter multiple sites
from using the project as the limit is instance-wise. Even
if some connections get closed, the browser might not be
able to open new connections due to another bug: WebRTC
connections are not counted in garbage cleaning statistics.
To re-use previously closed connections the applications need
to wait a garbage-cleaning cycle or cause one manually by

allocating and de-allocating a large quantity of memory. Fire-
fox also has WebRTC-related issues where UDP candidates
are sometimes not gathered on a page reload, as this bug
is not easy to isolate nor reproduce we could not report
the issue. Another issue common in both engines on various
operating systems is a timeout before candidate gathering is
complete [9], Chromium developers describe it as “intended
behavior”. WebDHT requires additional development to work
around the issue.

Another more fundamental issue is caused by background
page hibernation. In modern browsers when a page is not
actively used it is put in a state of limited resources. In
WebDHT this behavior can be observed as applications may
be unable to answer to WebRTC requests. This behavior slows
down significantly the project bootstrap and operations since a
new node needs to wait a predefined timeout before dropping
the connection. Potential solutions might include detecting
page focus state, to notify peers if a hibernation event is
occurring, or to escape page hibernation completely.

Future developments which may help the development of
browser-based DHTs are web-push notifications [10], which
could be used as a signaling channel or as a bootstrap option
to reconnect to previous nodes. Moreover, W3C is working on
DHT-related WebRTC use cases that may help the project’s
development like reusable SDPs and 1RTT connection estab-
lishment [11].

B. Behavior in case of high-loads

We implement WebDHT to support high load scenario even
with limited resources. In case of browser nodes, the major
constraint is related to the limited amount of connections
available on browsers. In case of native nodes, the major
bottleneck may be represented by those used to bootstrap
the network, which may have to support a large number of
requests. Kademlia-based DHT routing tables have limited
capacity: if a k-bucket of the routing table is full, no other node
is inserted. The node will still accept connections from other
nodes and answer their queries, but their information will not
be used for routing purposes. Our WebDHT implementation
uses a similar approach to handle high-load scenarios with
little variants. Every node has two main limits, one for
the routing table and a higher one for the transport-level
connections. When a connection to the node is established,
it will try to insert it in the routing table. If the routing table
is full, the new connection will be put in a list of “half-closed”
connections, and the other peer is notified about this behavior.
A new connection that caps the transport-level limit causes
the server to close an other available half-closed connection, if
possible. The new connection is rejected only if no connections
can be closed. To enforce a fair behavior, our implementation
adopts a First In First Out queue for half-closed connections.

C. Behavior in case of Sybil and Eclipse attacks

DHTs are inherently vulnerable to Sybil and Eclipse attacks.
In a Sybil attack, the adversary creates many “fake nodes”
within the DHT to gather information about the issued queries



or to disrupt routing with ill-responding nodes that do not
contribute to the routing protocol. Instead, an eclipse attack
aims at polluting the routing table of a target node until it only
stores Sybil nodes. Both Sybil and Eclipse attacks leverage
the self-management of identities by the nodes. Previous
work on MainlineDHT [12], [13] and Emule’s DHT [14]
render less effective these attacks by letting nodes derive their
identity from some publicly verifiable network or transport
layer information, such as a public IPv4 or the port number.
This approach cannot be used by WebDHT because WebRTC
currently does not use UDP multiplexing and any new con-
nection uses a new port. Moreover, deriving the identifier from
IPv4 alone would not support clients behind NATs, which
is a typical scenario for browser nodes. WebDHT instead
derives its routing nodes identities only from the cryptography
public key, without using any network or transport-related
information. Thus, an adversary must randomly sample the
identity-space by generating new keys, and cannot freely
choose identifiers closer to a target value. Future work on
WebDHT may include supporting the query protocol described
in S/Kademlia [15] to render eclipse attacks unfeasible.

VII. RELATED WORK

The traditional approach to implement a signaling channel
for WebRTC is based on centralized services, for which exist
popular implementations. As an example, PeerJs [16] is a
popular open-source library that simplifies WebRTC usage by
allowing running an in-house signaling server, but does not im-
plement any feature for decentralizing signaling. Gun-js [17],
which aims to be a “decentralized database for developers”,
offers a peer discovery mechanism which can be compared
to a federated rendezvous signaling server. However, it only
supports native nodes. Support for a WebRTC-based DHT has
been declared as interesting by the maintainers of Gun-js.

The two most prominent standardization efforts for DHTs
are represented by LibP2P [3] and OpenDHT [2]. LibP2P [3]
is a modular network stack that offers a Kademlia-like DHT
as a “peer-routing” layer. OpenDHT [2] is a Kademlia-like
DHT library with many bindings. However, these DHTs are
built upon UDP thus they do not support browser technologies.
Although LibP2P has early browser support, it is still in
an embryonic stage as it does not support any discovery
layer [18]. Currently, LibP2P browser discovery is only us-
able through some rendezvous servers that bridge native and
browser clients. WebDHT designs variants of the same DHTs
protocols to support browser and Web technologies.

WebTorrent [19] is a port of BitTorrent protocol to the Web
using WebRTC as a P2P transport protocol. As WebTorrent
targets Web environments, it is not compatible with traditional
UDP-based protocols, but its WebRTC transport has been
merged into libtorrent making it compatible with libtorrent-
based native clients. Since WebTorrent can only use browser-
compatible technology it cannot access the DHT network, and
uses centralized WebSocket-compatible tracker servers.

Webrtc-explorer, also known as browserCloud.js [20], is a
Chord-like DHT developed in 2015/2016. While the project

is one of the first that aims to port a DHT to the browser
it still needs a rendezvous server as it does not support
WebRTC-based signaling. Detox [21] is the first project that
claims to have a browser-compatible DHT. However, we could
not reproduce their result as the project would not create
browser-to-browser connections. P [22] is a pioneer project to
leverage WebRTC as a signaling channel for WebRTC itself,
however it does not include any decentralized routing logic.
Nédelec et al [23] proposed specialized decentralized routing
protocols for WebRTC. Although they propose theoretical
analyses they do no propose implementations nor identity
technical limitations of Web environments.
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