
Article

GASP: Genetic Algorithms for Service Placement in fog
computing systems
Claudia Canali * , Riccardo Lancellotti

Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, Italy;
{claudia.canali, riccardo.lancellotti}@unimore.it
* Correspondence: claudia.canali@unimore.it

Version September 11, 2019 submitted to Algorithms

Abstract: Fog computing is becoming popular as a solution to support applications based on geographically1

distributed sensors that produce huge volumes of data to be processed and filtered with response time constraints.2

In this scenario, typical of a smart city environment, the traditional cloud paradigm with few powerful data3

centers located far away from the sources of data becomes inadequate. The fog computing paradigm, which4

provides a distributed infrastructure of nodes placed close to the data sources, represents a better solution to5

perform filtering, aggregation and pre-processing of incoming data streams reducing the experienced latency6

and increasing the overall scalability. However, many issues are still open about the efficient management of a7

fog computing architecture, such as the distribution of data streams coming from sensors over the fog nodes to8

minimize the experienced latency. The contribution of this paper is twofold. First, we present an optimization9

model for the problem of mapping data streams over fog nodes, considering not only the current load of the fog10

nodes, but also the communication latency between sensors and fog nodes. Second, to address the complexity11

of the problem we present a scalable heuristic based on genetic algorithms. We carried out a set of experiments12

based on a realistic smart-city scenario: the results show how the performance of the proposed heuristic is13

comparable with the one achieved through the solution of the optimization problem. Then, we carried out a14

comparison among different genetic evolution strategies and operators that identify the uniform crossover as the15

best option. Finally, we perform a wide sensitivity analysis to show the stability of the heuristic performance16

with respect to its main parameters.17

Keywords: Fog computing; Optimization model; Genetic algorithms; Sensitivity analysis18

1. Introduction19

In the last few years we witnessed an ever increasing popularity of sensing applications, characterized by20

the fact that geographically distributed sensors produce huge amounts of data that are then pushed towards the21

Internet core where cloud computing data centers are located to be processed. However, this traditional approach22

may cause excessive delays for those applications and services that require data to be processed with very low23

and predictable latency, such as those related to systems for smart traffic monitoring, support for autonomous24

driving, smart grid, or fast mobility applications (i.e., smart connected vehicle or connected rails). Another25

important observation is that not all the data needs to go to the cloud data centers, but in many cases data could26

be pre-processed, aggregated and filtered to store in network core only a reduced meaningful set of data, thus27

avoiding to unnecessarily stress the network infrastructure.28

The emerging paradigm of fog computing represents a solution that can improve scalability and reduce29

application latency by extending cloud computing towards the edge of network [1,2]. While in the traditional30

cloud architecture (Fig. 1a), the data flows are sent directly from the sensor layer to the data center(s) in the31

cloud layer, in the fog infrastructure (Fig. 1b) tasks and services may be moved close to the sources of data32

to be processed thanks to the presence of an intermediate layer of fog nodes, located at the network edge33

interposed between the cloud data center(s) and the sources of data. The innovative paradigm of fog computing is34

Submitted to Algorithms, pages 1 – 17 www.mdpi.com/journal/algorithms

http://www.mdpi.com
https://orcid.org/0000-0001-8448-7693
https://orcid.org/0000-0002-9470-8784
http://www.mdpi.com/journal/algorithms

Version September 11, 2019 submitted to Algorithms 2 of 17

promising in addressing the still unsolved issues of cloud computing related to unreliable latency, lack of mobility35

support and location-awareness. However, realizing the fog computing full potential introduces several new36

challenges [3,4]. Many existing papers focus on balancing load distribution between fog and cloud resources:37

among them, we should mentions the studies in [5,6] that tackles the issue of optimizing the allocation of the38

processing tasks coming from the fog nodes over the cloud infrastructure. To this aim different solutions are39

proposed such as the possibility to rely on horizontal communication among fog nodes to reduce the service40

delay through load sharing mechanism.41

On the other hand, less attention was received by the lower level connecting the data sources to the fog nodes.42

In literature, indeed, many studies rely on the assumption that fog nodes communicate directly with sensors or43

mobile users through single-hop wireless connections [5] or that a domain of sensor nodes communicate with44

a specific and application-defined domain of fog nodes [6]. However, the choice of the fog node that receives45

and processes the data flow originated by a specific sensor may significantly affect the perceived latency and the46

overall performance of the application. Hence, we claim that mapping the data flows from the sensors over the47

available fog nodes for processing and filtering tasks represents a critical issue to guarantee a high QoS in terms48

of latency and/or response time.49

The contribution of this paper is twofold:50

1. We present an optimization model for mapping the incoming data flows (sensors workload) over the nodes51

of the fog layer: the proposed model considers not only the processing time on the fog nodes depending on52

the local load, but also the latency between sensors and fog nodes due to the communication delay of the53

geographically distributed infrastructure.54

2. We propose an heuristic to provide a scalable solution to the problem of mapping sensors over fog nodes55

that could be applied to large-scale instances. The proposed heuristic is based on Genetic Algorithms56

(GAs), a method for solving both constrained and unconstrained optimization problems that relies on the57

natural selection process that drives biological evolution: those kind algorithms have been previously and58

successfully exploited in the context of cloud computing and Software-as-a-Service placement [7] but, to59

the best of our knowledge, it has never applied to fog computing infrastructures.60

(a) Cloud (b) Fog
Figure 1. Cloud and Fog Infrastructures

This paper extends a previous study by the same authors [8], representing a clear step ahead for the following61

reasons:62

• the proposal of a more streamlined model for the optimization problem;63

• a in-depth discussion of the genetic algorithm features and of their adaptation to the specific context;64

• a new and more significant experimental setup;65

• new experimental results including a broad sensitivity analysis on the main heuristic parameters.66

To evaluate the performance of the proposed solution, we consider a realistic smart city scenario as an67

example of a typical sensing environment where geographically distributed sensors produce data flows require68

Version September 11, 2019 submitted to Algorithms 3 of 17

efficient processing for a wide range of possible applications, such as traffic monitoring and control, support69

for autonomous driving and environmental sensing. Experiments were carried out on a geographic testbed70

representing a fog architecture whose nodes are realistically placed in the streets of a small-sized city (roughly71

180.000 inhabitants) in Emilia Romagna, Italy. The experiments show that the proposed heuristic can achieve72

performance similar to the one of a commercial solver applied to an optimization problem for mapping the data73

flows over the fog nodes. Then, we compare different genetic evolution strategies and operators to identify the74

best options (for example, we show how the uniform crossover outperforms other crossover operator or we75

demonstrate that the tournament selection is a better choice than the roulette selection). Finally, we evaluate76

the stability of the heuristic performance with respect to parameters, such as the number of generations, the77

probability of mutation and crossover, and the population size.78

The remainder of this paper is organized as follows. Section 2 describes the problem formally defines79

the considered optimization model, while Section 3 presents the heuristic algorithms proposed for solving the80

problem. Section 4 describes the experimental testbed and results used to prove the viability of our approach.81

Finally, Section 5 discusses the related work and Section 6 concludes the paper with some final remarks and82

outlines open research problems.83

2. Problem definition84

This section describes the fog infrastructure and the problem of efficiently mapping the data flows coming85

from the sensors over the available fog nodes. In the second part of the section, we present the optimization86

model that formalized the mapping problem.87

2.1. Mapping problem88

Our problem concerns the management of data flows in a fog infrastructure such as the one shown in Fig. 1b.89

The infrastructure, that we assume to be deployed in a smart-city scenario, is composed of three layers: a sensor90

layer that produces data (represented as a set of wireless sensors at the bottom of the figure), a fog layer that is91

responsible for a preliminary processing of data from the sensors (second layer in the figure), while a cloud layer92

that is the final destination of the data (at the top of the figure). The underlying application logic involves the93

typical services of a smart city scenario. Sensors collect information about the city status, such as traffic intensity94

or air quality [9]. Such data should be collected at the level of a Cloud infrastructure to provide value-added95

services such as traffic or pollution forecast. The proposed fog layer intermediates the communication between96

the sensors and the cloud to provide scalability and reliability in the smart city services.97

In our model, we assume a stationary scenario where a set of similar sensors S are distributed over an area98

(we consider the sensors to be not moving, although a different scenario, where mobility is taken into account99

can be easily introduced in our model). Furthermore, we assume that sensors are producing data at a steady rate,100

with a frequency that we denote as λi for the generic sensor i (for a summary of the symbols used in the model,101

the reader may refer to Tab. 1). The fog layer consists of a set of nodes F that receive the data from the sensors102

and perform operations on them. These operations typically include pre-processing of the data, such as filtering103

and/or aggregation, or may include some form of analysis to identify anomalies or problems as fast as possible.104

The refined data samples from the fog nodes are then sent to a cloud platform where additional analysis is carried105

out and where all the information is stored. These additional analysis tasks are typically highly expensive from a106

computational point of view.107

As the problem concerning the management of large cloud data centers has been widely addressed in108

literature [10,11], we do not consider the inner details of the cloud layer in our problem modeling, such as the109

computation time at the level of the cloud data center. Similarly, we do not consider the network-based latency110

due to the communication between the fog nodes and the cloud data center, as we assume this latency to be the111

same for all fog nodes and hence having no impact on the optimum mapping solution. Instead, we focus our112

attention to the problem of coordinating the communication of the elements in the sensor layer with the nodes in113

the fog layer. Specifically, we want to guarantee a high QoS, in terms of fast response. To this aim, we model the114

response time according to a queuing theory-based formulation, considering that the response time has two major115

contributions that should be taken into account:116

Version September 11, 2019 submitted to Algorithms 4 of 17

• Network-based latency due to the communication between the sensor and the fog nodes. We denote this117

value as δi,j where i is a sensor and j is a fog node.118

• Computation time on the fog node. According to queuing theory, this time depends on the computation119

cost of the request (we denote as 1/µj the time to process a packet of data from a sensor on fog node j,120

relying on the typical queuing theory notation) and on the rate λj of the jobs incoming at fog node j, where121

the value of λj is the sum of all the outgoing data rates λi of all the sensors i that are communicating with122

the fog node j.123

For the sake of clarity we summarize the symbols used throughout the paper in Tab. 1.124

2.2. Optimization model125

The main problem in the considered fog scenario is how to map on the fog nodes the data flows coming126

from the sensors. To this aim, we define an optimization problem where we use as the main decision variable a127

matrix of boolean flags xi,j. In our model xi,j = 1 if and only if sensor i is sending data to fog node j, otherwise128

xi,j = 0. As the function of fog nodes is to pre-process the incoming data performing filtering and aggregation,129

we consider that all the data of a sensor must be sent to the same fog node and cannot be distributed across the130

fog layer.131

Again, the reader may refer to Tab. 1 for a summary of the parameters used in our model.132

Table 1. Notation.

Symbol Meaning/Role

Decision variables

xi,j Sending data flow from sensor i to fog node j

Model parameters

S Set of sensors
F Set of Fog nodes
λi Outgoing data rate from sensor i
λj Incoming data rate at fog node j
1/µj Processing time at fog node j
δi,j Communication latency between sensor i to fog node j

Model variables

i Index of a sensor
j Index of a fog node

The optimization model to address the previously-described problem can be formalized as follows, with133

an approach similar to the problem of allocating requests over a distributed infrastructure, such as VMs on a134

cloud [10,12,13]. In particular, we introduce a matrix of boolean decision variables X = {xi,j} that is used to135

define the objective function and the constraints as follows:136

min obj(X) = ∑
i∈S

∑
j∈F

xi,j ·
(1

µj − λj
+ δi,j

)
(1)

subject to:

λj = ∑
i∈S

xi,j · λi ∀j ∈ F , (2)

∑
j∈F

xi,j = 1 ∀i ∈ S , (3)

λj < µj ∀j ∈ F , (4)

xi,j = {0, 1}, ∀i ∈ S , j ∈ F , (5)

Version September 11, 2019 submitted to Algorithms 5 of 17

In the problem formalization, the objective function 1 aims at reducing the total (and hence the average)137

latency and processing time from every sensor to the fog computing nodes. The expression of response time138

used for our objective function is consistent with other studies in literature focusing on distributed cloud139

infrastructures [14]. Specifically, the average processing time is derived from Little’s result applied to a M/G/1140

model and considers just the average arrival frequency λj and the processing rate µj of each fog node j. This141

definition of the response time has been widely adopted in literature, for example in [14]. The second part142

of the objective function, that is the latency contribution, captures effectively the communication delay of a143

geographically distributed infrastructure using the latency δi,j.144

Together with the objective function, we have a set of constraints. Equation 2 defines the incoming load λj145

on each fog node j. Constraint 3 means that for every sensor i, we direct its output to one and only one fog node.146

Constraint 4 guarantees that, for every fog node j, we avoid a congestion situation, where the incoming load λj147

exceeds the processing capability µj of that node. Finally, constraint 5 defines the boolean nature of the decision148

variables xi,j.149

3. Heuristic algorithm150

The optimization problem defined in the previous section aims to map sensors over fog nodes. This model151

can be processed using commercial solvers, like CPLEX or KNITRO [15], that have been successfully used in152

similar problems [16]. However, in this paper we explore the opportunity to develop a specific heuristic to tackle153

the problem.154

When considering heuristic algorithms, multiple options are available. Greedy heuristics tend to be quite155

fast, but their performance may depend heavily on the inherent nature of the problem due to the risk, common to156

several gradient descent methods, of being stuck in local minima. With respect to this problem, the combination157

of a non-linear objective function and a feasibility domain that is not guarantee to be convex may hinder the158

application of greedy solutions. On the other hand, the dimensionality of the problem, with potentially many fog159

nodes and many sensors, may reduce the performance of branch and bound approaches, that have a large decision160

variable space to explore. Since our goal is to provide a general and flexible approach to tackle this problem, we161

focus on meta-heuristics that should be more able to adapt to a wide and heterogeneous set of problems [17].162

We focus on evolutionary programming (and in particular on genetic algorithms – GAs) because this class of163

heuristics has already provided good results in problems with similar characteristics, such as the allocation of164

VMs on a cloud infrastructure [7].165

3.1. Genetic Algorithms overview166

We now provide an overview of the use of genetic algorithms (GAs) to solve an optimization problem.167

When using GAs, we consider a population of individuals. Each individual encodes a solution of a problem168

as a chromosome: for example a generic individual k will be represented as a its chromosome Ck. In turn, the169

chromosome Ck is a sequence of a fixed number genes, that is Ck = {ck
l }, and each gene represents a parameter170

that characterize the solution for that individual.171

The algorithm is initialized with a randomly generated population of individuals. To each individual is172

applied a fitness function, that is the objective function of the optimization problem. Hence, to each individual,173

we assign a fitness score that is the value of the objective function for that solution of the optimization problem.174

The population of individuals evolves through a defined number of generations, where the overall fitness of the175

population is increased using the following operators:176

Selection decides if an individual is passed from the Kth generation to the (K + 1)th. Selection typically uses177

the fitness score of each individual with the goal to discard unfit individuals. The typical approach in178

this case is to apply the fitness function to every individual (including new individuals generated through179

mutation and crossover) and to consider a probability of being selected for the next generation that depends180

on the fitness value.181

Mutation is a (random) change in single gene or in a group of genes. In GAs, mutation plays the role of adding182

new genetic material with the main goal to explore new areas of the solution space.183

Version September 11, 2019 submitted to Algorithms 6 of 17

Crossover is a merge of two individuals by exchanging part of their chromosomes. The main role of crossover184

in GAs is to allow successful genes in the parent solutions to spread throughout the population.185

These operators are combined to create an evolutionary strategy. In our analysis we consider the following186

two evolutionary strategies:187

Simple strategy is a strategy, described in [18], that, at every generation, samples the previous generation188

population using the selection operator. In doing so, the fittest individuals (that are more likely to be picked189

by the selection operator) are replicated, while the least fit individuals are left out of the new generation.190

Next, the mutation and crossover operators are applied to the new population, where each individual can be191

mutated or can undergo crossover with a given probability (defined as Pmut and Pcx, respectively). Mutated192

individuals replace the originals, while the offspring replaces the parent individuals.193

Mu Plus Lambda strategy (µ + λ) is another popular approach in evolutionary programming [18]. In this194

case, we apply the mutation and crossover operation to the previous generation population in order to195

create a set of offspring with a size of λ individuals. Next, the selection operator is invoked on the original196

population plus the offspring, with the aim to select µ individual for the next generation population (µ is197

selected to maintain the population stable over the generations). It is worth to note that the symbols µ and198

λ for the selection strategy are unrelated to the parameters with the same name introduced in the model199

of Section 2. We preserve this notation, to match the definition of evolutionary straregies as described200

in [18,19].201

3.2. Selection operator202

The selection operator is used together with the evolutionary strategy to define how individuals are passed203

from a generation to the next. The selection operation is called multiple times on a pool of individuals (typically204

from the older generation) and returns one individual for each invocation that will be passed in the current205

generation. In our analysis, we focus on two selection operators:206

Tournament selection is a selection operator where, for each individual to return, the operator picks randomly207

N elements in the population and returns the fittest one among them.208

Roulette selection is an operator that selects, for each individual to return, a chromosome from the population209

with a probability that is proportional to its fitness score.210

3.3. Mutation operator211

The mutation operator is called on each individual within the population with a probability that we call Pmut.212

Mutation alters one or more genes of the selected chromosome. Multiple mutation operators can be implemented.213

In our study, we consider two types of mutation operators that are:214

Shuffle mutation is a mutation where the mutated individual takes the genes of original chromosome applying215

a permutation to them. An example of shuffle mutation is shown in the upper part of Fig. 2, where the216

genes that are involved in the mutation are marked with a darker color and arrows are used to show the217

genes permutation.218

Uniform Integer mutation is a mutation operator in which one or more genes are modified. The value of the219

affected genes is replaced using a uniform random distribution. In Fig. 2, this mutation operator is shown220

in the lower part of the image and the affected gene is marked with a darker color.221

3.4. Crossover operator222

The crossover operation takes two individuals and mate them to create two new individuals (offspring) that223

inherit their genes form the two parents. In the sensitivity analyses in Section 4, we will refer to the probability224

of selecting an individual for a crossover operation as Pcx. There are several possible crossover operators. In our225

analysis, we consider the following options:226

Version September 11, 2019 submitted to Algorithms 7 of 17

Figure 2. Examples of mutation operators

Uniform crossover is crossover operator where the offspring will inherit each gene from a randomly selected227

parent. In Fig. 3, the Uniform crossover operation is shown in the leftmost of the image. Each of the228

parents is characterized with a color. The offspring inherits each gene from one of the parents, and the229

parents from which the gene is inherited is marked with the same color of the parent.230

One Point crossover is characterized by a splitting point in the chromosome is randomly selected. The two231

resulting sections of the chromosome (from beginning to the spitting point and from the splitting point to232

the end) are then inherited from the parents as shown in the center part of Fig. 3.233

Two Points crossover is similar to the One Point version, but we have two splitting points, as shown in the234

rightmost part of Fig. 3.235

Uniform Partially Matched crossover (UPMX) is a variant of the Uniform crossover operator proposed in [20]236

that takes into account the possible presence of identical genetic material between the parents.237

Figure 3. Examples of crossover operators

3.5. GA-based problem model238

We now discuss how the a GA-based model of the problem can be derived from the optimization model239

described in Section 2.240

The fist critical choice if how to encode a solution in a chromosome. To this aim, we describe a chromosome241

as a sequence of S genes, with S = |S| being number of sensors. The generic ith gene ci is represented as a an242

integer number from 1 to F (with F = |F | being the number of fog nodes in our infrastructure) and captures the243

information on which fog node will receive the output of that sensor. Chromosomes contains the information244

of the decision variable xi,j in the problem defined in 2. Specifically, we can define the generic ith gene as245

ci = {j : xi,j = 1}. As only one fog node will receive data from sensor i, due to constraint 3 in the optimization246

model, we can map each possible solution of the optimization problem in Section 2 into a chromosome, with no247

conflicts or ambiguities.248

The second critical problem is the definition of the fitness function for the evaluation of the chromosomes.249

This design choice is straightforward because, due to the mapping between chromosomes and optimization250

problem solutions, we can simply adapt the objective function 1 to the GA-based model and use this function for251

the evaluation of individuals.252

Finally, we must take into account the constraints of the optimization problem. Constraints 3 and 5 are253

automatically satisfied by our encoding of the chromosomes. We need to implement also constraint 4 concerning254

Version September 11, 2019 submitted to Algorithms 8 of 17

the fog node overload. We chose not to embed directly the notion of unacceptable solution in a genetic algorithm255

as it may hinder the ability of the heuristic to converge towards a solution. Instead, we added this constraint256

into the fitness function, so that an individual that contains a solution with one or more overloaded fog nodes257

is characterized by a high penalty and is, therefore, likely to exit the genetic pool in few generations. To258

define the value of the penalty, we refer to the model used in the problem definition. In particular, for most259

solvers the constraint 4 must be reformulated using a lesser-or-equal relationship, rather than the lesser-to. Hence,260

constraint 4 becomes λj ≤ µj− ε, with ε = 10−5. We leverage this alternative formulation also for the GA-based261

model forcing the penalty in such a way that, if there is overload, the processing time contribution to the objective262

function becomes equal to 1/ε.263

4. Experimental results264

We now present the main findings of our research. We start by introducing the reference scenario of our265

experiments. Next, we compare the ability to achieve an optimal solution of the GAs-based approach with the266

AMPL-based [21] model solved using KNITRO [15]. In the remaining of the paper we discuss the sensibility of267

the GA-based heuristic with respect its main parameters: the number of generations, the evolutionary strategies268

and operators, the probability of mutation and crossover, and the population size.269

4.1. Experimental testbed270

To evaluate the viability of our proposal, we consider a fog scenario characterized by (1) a significant271

number of sensors; (2) a set of fog nodes, with limited computational power, that aggregate and filter the data272

from the sensors; (3) a cloud data center that collects the information processed by the fog nodes. Our testbed273

scenario is based on a smart city whose topology is based on a real Italian city (Modena) with a population in the274

order of 180,000 inhabitants.275

 44.54

 44.56

 44.58

 44.6

 44.62

 44.64

 44.66

 44.68

 44.7

 10.8 10.85 10.9 10.95 11 11.05

L
a
ti
tu

d
e

Longitude

Sensors
Fog nodes

Cloud datacenter

Figure 4. Smart city scenario

Our reference use case is a traffic monitoring application. Sensors, fog nodes and the cloud data center are276

shown in Fig. 4 to represent the smart city scenario. To gather data concerning traffic-related measures, such as277

the number of cars passing in each street (with their speed), we place wireless sensors on the main streets of278

the city. To model the application we referred to the Trafair Project [9], currently involving the city of Modena279

considered for the topology model.280

The sensors map in Fig. 4 is created starting from the geo-referenced list of the streets of the cities281

characterized by higher volumes of traffic: we assume to have one sensor for each one of these streets.282

Furthermore, we selected a group of 6 buildings that host offices of the municipality and that are interconnected283

with a high speed metropolitan area network: each one of these buildings is assumed to host a fog node. The284

final scenario is composed of a 89 sensors and 6 fog nodes. The interconnection between fog nodes and sensors285

is characterized by a delay that we model using the euclidean distance between the nodes. The average delay is286

Version September 11, 2019 submitted to Algorithms 9 of 17

in the order of 10 ms, that is consistent with a geographic network. Finally, we assume to have only one cloud287

data center, that is located where the Modena municipality data center actually is and is connected to the fog288

nodes through low latency links not considered in the optimization model.289

Concerning the traffic model, we describe each scenario based on two metrics. The first metric is the
average load of the system ρ, while the other parameter δµ represents the ratio between the average network
delay (δ) and the average service time (1/µ). Specifically, we define the two parameters as:

ρ =
∑i∈S λi

∑j∈F µj
(6)

δµ =
∑i∈S ∑j∈F δi,j

|F ||S| ·
∑j∈F µj

|F | (7)

In our experiments, we consider several scenarios, corresponding to different combinations of these290

parameters, in order to analyze the performance of the GAs-based solution for the sensor mapping problem. For291

example, a scenario where ρ = 0.8 and δµ = 0.01 (corresponding to the bottom right corner of Fig. 5) represents292

a case where network delay is much lower than the average job service time, while the processing demand on the293

system is high. This means that the scenario is CPU-bound because managing the computational requests is likely294

to be the main driver to optimize the objective function. On the other hand, a scenario where ρ = 0.2 and δµ = 1295

(top left corner of Fig. 5) is a scenario characterized by a low workload intensity and a network delay comparable296

with service time of a job, where it becomes important to optimize also the network contribution to the objective297

function. Throughout our experiments, we first consider the implementation of the model discussed in Section 2,298

using the AMPL language [21] and KNITRO [15] as the solver. Due to the nature of the problem, we were not299

able to let the solver run until the convergence. Instead, we placed a walltime limit of 120 minutes, with a 16 core300

CPU and 16 concurrent threads. We compare the results of this solver with the GAs-based implementation, that301

uses the Distributed Evolutionary Algorithms in Python (DEAP) framework [19]. Using the same framework, we302

also evaluate and compare several evolutionary strategies and operators, as described in Section 3.303

Table 2. Default GAs parameters

Parameter Value

Strategy Simple strategy
Selection Tournament selection
Mutation Uniform Integer mutation
Crossover Uniform crossover
Population size 200
Generations 300
Pmut 0.8%
Pcx 0.8%

When evaluating the GAs-based approach, we run the experiments 100 times and we report the main304

performance metrics in the form of average value and confidence interval. In particular, for the confidence305

interval we consider a span of ±2σ, where σ is the standard deviation, that accounts for ≈ 95% of the samples.306

The genetic algorithm considers the default parameters shown in Tab. 2, that have been selected after some307

preliminary experiments. Furthermore, when considering the convergence speed, we consider as the convergence308

criteria the case of a fitness value within 1% of the optimum value obtained using the AMPL solver.309

Version September 11, 2019 submitted to Algorithms 10 of 17

4.2. Comparison of Solver and GA-based approaches310

The first analysis of our research compares the difference between the solution found by the genetic
algorithm and the one obtained by the KNITRO solver. To this aim, we introduce as the main performance metric
the discrepancy ε defined as follows:

ε =
OptS −OptGA

OptS
(8)

Where OptS is the value of the objective function for the best solution found by the solver, and OptGA is the311

value based on the best solution found using the genetic algorithm. It is worth to note that the run with KNITRO312

are not guaranteed to reach optimality because we stop the solver after a given amount of time. Hence, in some313

cases the genetic algorithm may outperform the solver, resulting in ε < 0, as we will see in the results.314

0.01

0.03

0.1

0.3

1

0.2 0.5 0.8

δ
 µ

ρ

GA solution error [%]

-4

-3

-2

-1

 0

 1

 2

 3

 4

Figure 5. Performance comparison: ε [%]

Fig. 5 shows as an heatmap the value of ε for ρ ranging from 0.2 to 0.8 and δµ ranging from 0.01 to 1. In315

the color coded representation of ε, blue hues refer to a better performance of the genetic algorithm, while red316

hues correspond to better performance of the solver. From this comparison, we observe that the performance317

of the two approaches are similar, with the genetic algorithm providing slightly better performance in some318

cases (e.g., for ρ = 0.8, δµ = 0.03 we have ε = −3.3%) and the solver prevailing in other cases (for ρ = 0.8,319

δµ = 0.01 we have ε = 3.8%). It is worth to note that most differences occur for ρ = 0.8, that is when the risk320

of overloading the fog nodes is higher and the value of the objective function is highly variant with respect to the321

considered solution.322

Using this heatmap, we select two relevant cases that will be used throughout the remaining of the paper to323

analyze the stability of the genetic algorithm behavior: we consider an intermediate value for the load (ρ = 0.5),324

while for the delay impact we consider three scenarios in the range from δµ = 0.01 to δµ = 1 to fully explore325

the variations in problem properties from the solver point of view.326

4.3. Convergence analysis of GAs327

The second critical analysis concerns the impact of the number of generations on the performance of the328

genetic algorithm. We carry out this analysis for the two previously presented two scenarios, that is ρ = 0.5,329

δµ = 0.01 and ρ = 0.5, δµ = 1.330

In this (and in the subsequent) evaluations we consider the previously introduced discrepancy between the331

GAs and the solver (ε). The value of ε is measured at every generation for the GA (compared with the final output332

of the solver). This allows us to evaluate if the population is converging over the generations to an optimum.333

Fig. 6 presents the results of this analysis. Specifically, we consider the evolution of ε for the considered334

scenarios through 300 generations of the genetic algorithm. The graph shows also an horizontal line at the value335

of 1%: we consider that the genetic algorithm has reached convergence when ε ≤ 1% and we consider the336

Version September 11, 2019 submitted to Algorithms 11 of 17

-2

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

ε
[%

]

Generations

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

Figure 6. Convergence analysis

generation when this condition is verified as a metric to measure of how fast the algorithm can find a suitable337

solution. It is worth to note that, given the generally low value of ε, this convergence criteria returns values quite338

similar to the more common formulation where convergence is defined on the basis of being close (i.e., within339

1%) to the best result achieved with the genetic algorithm itself.340

Comparing the three curves we observe two highly different behaviors. On one hand, for the curve341

characterized by δµ = 1 (curve marked with filled triangles in Fig 6) we observe a clear descending trend.342

At the opposite end of the behavior spectrum, the curve for δµ = 0.01 (curve marked with filled squares),343

is characterized by a value of ε that is very low right from the first generation and remains stable over the344

generations. The third curve (δµ = 0.1, marked with filled circles) is similar to the case with δµ = 0.01, even if345

a small descending trend can be observed in the first generations. The reason for this behavior can be explained346

considering the nature of the problem, where the objective function depends on two main contributions: the347

processing time (that depends mainly on the ability of the algorithm to distribute fairly the sensors among the fog348

nodes) and the network latency, that depends on the ability of the algorithm to map the sensors on the closest fog349

node. When δµ = 0.1 and δµ = 0.01, the impact of the second contribution is reduced by one or two orders of350

magnitude compared to the case δµ = 1. Hence, any solution that provides a good level of load sharing will351

be close to the optimum. As the genetic algorithm initializes the chromosomes with a random solution (with352

a uniform probability distribution), it is likely to have one or more individual right from the first generation353

that provide very good performance. Further evolution of the population provides a limited benefit (due to the354

reduced weight of the network latency component) explaining the stable values of ε over the generations. The355

case when δµ = 1 is remarkably different as the two contributions to the objective function have a comparable356

impact. Hence, the genetic algorithm must evolve through the generations to explore a large space of solutions to357

find good individuals letting the population evolve.358

4.4. Comparison of evolutionary strategies and operators359

We now discuss how the considered evolutionary strategies and operators affect the performance of the360

genetic algorithm. In these analyses, we will consider two main metrics, that are the best value of ε over the361

generations introduced in Section 4.2 (we recall that we run the algorithm for 300 generations), and the number362

of generations required to reach convergence, introduced in the Section 4.3. For each of the two metrics we363

record the average value over the 100 repetitions of the experiments and a confidence interval that accounts for364

roughly 95% of the results.365

Tab. 3 shows the value of the considered metrics as a function of different evolutionary strategies, selection366

operators, mutation operators, and crossover operators. Each of these options has been introduced and described367

in Section 3.368

Version September 11, 2019 submitted to Algorithms 12 of 17

Table 3. Evolutionary strategies

Strategy or ρ = 0.5, δµ = 0.01 ρ = 0.5, δµ = 0.1 ρ = 0.5, δµ = 1.0
Operator ε [%] # Gen. ε [%] # Gen. ε [%] # Gen.

Evolutionary strategies

Simple −0.20± 0.01 0.00± 0.00 0.53± 0.07 0.00± 0.00 0.54± 0.15 23.43± 3.82
µ + λ −0.27± 0.01 0.00± 0.00 0.02± 0.05 0.00± 0.00 0.65± 0.17 21.36± 3.68

Selection Operators

Tournament −0.21± 0.01 0.00± 0.00 0.52± 0.08 0.00± 0.00 0.54± 0.13 23.85± 3.69
Roulette 0.23± 0.27 0.00± 0.00 1.54± 0.26 0.00± 0.00 11.25± 0.56 300.00± 0.00

Mutation Operators

Shuffle −0.23± 0.01 0.00± 0.00 0.48± 0.04 0.00± 0.00 1.92± 0.29 30.29± 5.79
Uniform Int −0.21± 0.01 0.00± 0.00 0.53± 0.08 0.00± 0.00 0.54± 0.15 22.82± 3.66

Crossover Operators

Uniform −0.20± 0.01 0.00± 0.00 0.52± 0.07 0.00± 0.00 0.53± 0.13 24.21± 3.48
One Point −0.24± 0.01 0.00± 0.00 0.28± 0.08 0.00± 0.00 0.81± 0.19 27.50± 4.26
Two Points −0.23± 0.01 0.00± 0.00 0.34± 0.07 0.00± 0.00 0.78± 0.17 26.27± 4.10

UPMX −0.27± 0.01 0.00± 0.00 0.11± 0.07 0.00± 0.00 1.07± 0.22 27.38± 4.28

A first result from the values in the table is the confirmation of the main difference between the considered369

scenarios. When δµ = 0.01 and δµ = 0.1, the convergence occurs after just a few generations (typically right in370

the initial population) because the balancing part of the solution is reached easily, while the network part, that371

receives most benefit from population evolution, plays a minor role in the objective function. As a consequence,372

the impact of most considered options (that drive the evolution of the population) is reduced. On the other hand,373

the scenario with δµ = 1 provides a more significant comparison of the alternatives. It also worth to note that the374

best solution may depend on the scenario, as the inner nature of the problem may change as the balance in the375

contributions to the objective function shifts.376

Starting from the evolutionary strategies, we observe that both the simple strategy and the µ + λ alternative377

provide similar results, both in terms of objective function value and in terms of convergence. However, due to378

the additional complexity of the µ + λ strategy (that adds additional parameters to the algorithm) we consider379

the more straightforward simple strategy as the best option.380

Switching to the selection operators, we observe a major difference in the performance of the two alternatives381

(roulette and tournament selection). In the considered problem, the roulette selection tends to keep over the382

generations also unfit individuals, rather than purging them from the genetic pool. This hinders the convergence,383

as shown by the results of our experiments where the roulette selection is outperformed by the alternative in384

every considered scenario both in terms of ε and in terms of number of generations for convergence. Indeed,385

the roulette selection provides a good behavior when there is a difference that spans order of magnitude in the386

objective function, which is unlikely to occur in this type of problem. The tournament operator, instead, provides387

a good ability in filtering individuals from a generation to the next, guaranteeing lower values of ε (we recall that388

the best value of ε is computed over the span of 300 generations, so, even if convergence occurs in the initial389

population, we may experience a positive impact of the strategy on the final value of ε).390

If we consider mutation operators, we observe another effect of the changes in the problem nature with391

the different scenarios. For the δµ = 0.01 and δµ = 0.1, the Shuffle operator is better, because it preserves392

the most important characteristics that is the load balancing. However, this behavior has a negative impact in393

the δµ = 1 scenario as it hinders a more free exploration of the solution space. On the other hand a uniform394

mutation operator provides better performance for the δµ = 1 scenario at the expenses of a less effective search395

for the optimum when δµ = 0.01 or δµ = 0.1.396

Version September 11, 2019 submitted to Algorithms 13 of 17

Finally, we compare the four crossover operators. The basic performance of these operators are quire similar,397

with a limited difference in both ε and in the number of generations to reach convergence. We also observe the398

opposite behavior between the scenarios where the load balancing is more important than the search for the399

closest fog nodes (δµ = 0.01 and δµ = 0.1) compared to the opposite case where distance reduction through400

optimized topology plays an important role in performance (δµ = 1). However, due to the reduced impact of this401

parameter, we consider as the best option the uniform crossover, due to its fast and simple implementation and402

due to its stable performance over the different scenarios.403

4.5. Sensitivity to population size404

As an additional analysis we evaluate how the population size affects the performance of the genetic405

algorithm. To this aim we change the population size from 50 to 500 individuals and we measure the difference406

in the objective function ε, the generations required to reach convergence and the execution time considered as407

the time elapsed until the algorithm reaches the convergence criteria (the main results are shown in Fig. 7). For408

each metric also show the confidence intervals, represented with error bars in the graphs of Fig. 7.409

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250 300 350 400 450 500

ε
[%

]

Population size

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

(a) ε

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250 300 350 400 450 500

G
e
n
e
ra

ti
o
n
s
 f
o
r

c
o
n
v
e
rg

e
n
c
e

Population size

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

(b) Convergence

 0.01

 0.1

 1

 10

 50 100 150 200 250 300 350 400 450 500
C

o
m

p
u
ta

ti
o
n
 t
im

e
 f
o
r

c
o
n
v
e
rg

e
n
c
e
 [
s
]

Population size

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

(c) Execution time
Figure 7. Sensitivity to population size

The first significant result, shown in Fig. 7a comes from the evolution of ε with the population size: in this410

case we show that, for the more challenging scenario δµ = 1, increasing the population has a positive impact as411

it helps reducing the best value of ε reached. On the other hand, the other scenarios δµ = 0.01 and δµ = 0.1412

show that the impact of the population size is less evident, as the exploration of the solution space improving the413

existing solutions has a limited effect. In a similar way, the behavior of the other main metric, that is the number414

of generations to reach convergence, remains stable for the scenarios δµ = 0.01 and δµ = 0.1, while drops with415

the population when δµ = 1, due to the more efficient exploration of the solution space when the population is416

higher.417

Another interesting result, shown in Fig 7c, concerns the time to execute the genetic algorithm until418

convergence is reached (as the result of this experiment provides values spanning over multiple orders of419

magnitude, we use a logarithmic scale for the y axis). We observe that, for δµ = 0.01 and δµ = 0.1, the time420

to reach convergence grows linearly (the logarithmic scale results in a curve that is not a straight line) and421

corresponds with the setup time of the algorithm, as convergence is reached in the first generation, as shown in422

Fig. 7b. For the case where δµ = 1 the number of generations to convergence decreases with the population423

size. However, this effect is not enough to compensate the higher computation time needed to handle a larger424

population, resulting in a curve that is monotonically increasing with the population size, even if the growing rate425

is less evident in the first part of the graph (i.e for populations of 200 individuals or less) compared with the other426

curves.427

4.6. Sensitivity to mutation and crossover probability428

As a final analysis, we consider the sensitivity of the genetic algorithm to the two probabilities that define429

the evolution of the population, that is the mutation probability Pmut and the crossover probability Pcx.430

Concerning the mutation probability, Fig. 8 shows how this parameter affects the ability of the algorithm to431

reach a value close to the solver-based output through the ε metric (Fig. 8a) and how many generations it takes to432

converge (Fig. 8b). We recall that, as the scenarios δµ = 0.01 and δµ = 0.1 achieve a value of ε < 1% in the433

Version September 11, 2019 submitted to Algorithms 14 of 17

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1 1.2

ε
[%

]

Mutation Probability [%]

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

(a) ε

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1 1.2

G
e

n
e

ra
ti
o

n
s
 f

o
r

c
o

n
v
e

rg
e

n
c
e

Mutation Probability [%]

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

(b) Convergence
Figure 8. Sensitivity to Mutation Probability Pmut

first generation, the number of generations to reach convergence is not meaningful in these cases. Focusing on434

the ε metric, we observe for the scenarios a U-shaped curve that is more evident as δµ increases. In this curve435

both low values (Pmut ≤ 0.2%) and high values (Pmut ≥ 0.9%) result in poor performance while values in the436

range 0.4% ≤ Pmut ≤ 0.8% result in low values of ε.437

This behavior is explained considering the two-fold impact of mutations. On one hand, a low value of Pmut438

hinders the ability to explore the solutions space by creating variations in the genetic material. On the other hand,439

an higher mutation rate may simply reduce the ability of the algorithm to converge, because the population keeps440

changing too rapidly and good genes cannot be passed through the generations. The low values of Pmut has an441

interesting effect on the convergence curve for δµ = 1 in Fig. 8b: low mutation rates result in a poor ability to442

explore the solution space, with a high variance in the number of generations to reach convergence as this value443

depends significantly on the initial population setup.444

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 1 10

ε
[%

]

Crossover Probability [%]

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

(a) ε

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1 1 10

G
e

n
e

ra
ti
o

n
s
 f

o
r

c
o

n
v
e

rg
e

n
c
e

Crossover Probability [%]

ρ=0.5, δ µ=0.01
ρ=0.5, δ µ=0.1

ρ=0.5, δ µ=1

(b) Convergence
Figure 9. Sensitivity to crossover probability Pcx

The analysis shown in Fig. 9 evaluates the impact of the probability of selecting an individual for a crossover445

operation Pcx. Again we show both ε (Fig. 9a), and the generations to reach convergence (Fig. 9b) as a function446

of this parameter. Since we change the probability over a large range of values (from 0.1% to 20%), we use447

a logarithmic scale for the x-axis. From the analysis, we observe that also crossover probability has a major448

impact on the performance of the genetic algorithm, but this parameter has a different effect on the algorithm449

depending on the considered scenario. For δµ = 1, low values of Pcx reduce the ability of the algorithm to450

converge rapidly, while for higher values (that is Pcx ≥ 0.8%) this behavior does not occur. The reason for this is451

that a low crossover probability hinders the distribution of good genes in the population, thus slowing down the452

improvement of the population. For δµ = 0.01 and δµ = 0.1, the effect is opposite because for the exploration453

of the solution space, mutation is more important than crossover and a high crossover rate interferes with the454

mutation operator (when crossover is applied mutation does not occur) hindering its action.455

Version September 11, 2019 submitted to Algorithms 15 of 17

5. Related work456

The explosive growth in the generation of data and the need for their processing to provide innovative457

services and applications has recently led researchers to focus on fog computing solutions to complement the458

cloud systems capabilities. To always exchange localized data from and to the remote cloud, indeed, tends to be459

inefficient under different points of view, thus motivating fog computing to partially process workload and data460

locally on fog nodes [3,5,22,23].461

A survey discussing representative application scenarios and identifying various issues related to design and462

implementation of fog computing systems can be found in [3], while the study in [23] provides an overview of the463

core issues, challenges, and future research directions in fog-enabled orchestration for IoT services, focusing on464

smart cities as main motivating example of the research. Also our study considers the smart cities as a meaningful465

scenario where large amount of sensors and smart devices produce a huge volume of data on a geographically466

distributed area. Specifically, we focus on the specific issue of distributing the incoming workload over the fog467

nodes to minimize communication latency while avoiding overload.468

Some existing studies focus on the issue of allocating the processing tasks coming from the fog nodes to469

the cloud nodes to optimize performance and reduce latency. Among these studies, Deng et al. [5] explore the470

tradeoff between power consumption and transmission delay in the fog-cloud computing system, formulating an471

optimization of the allocation problem among fog and cloud nodes. The study in [6] explicitly focuses on the472

issue of minimizing the service delay in IoT-fog-cloud application scenarios, proposing a delay-minimizing policy473

for fog nodes: in contrast to other proposals in literature, the proposed policy employs fog-to-fog communication474

to reduce the service delay by sharing load. Similarly, in [24] an offloading mechanism is proposed where475

a fog-to-fog collaboration based on the FRAMES load balancing scheme aims to reduce the overall latency476

experienced by the services. It is worth to note that these studies do not consider the issue of mapping data477

sources on the fog nodes: the fog nodes directly communicate with the mobile users through single-hop wireless478

connections using the off-the-shelf wireless interfaces (e.g., WiFi, Bluetooth, LR-WPANs, etc.), or the considered479

scenario envisions a domain of IoT nodes (in a factory, for instance) that communicate with a domain of fog480

nodes, associated with the specific domain application(s). On the other hand, our study focuses on the issue of481

optimizing the mapping of the workload coming from data sources over the fog nodes.482

Few studies assume a flexible mapping of data sources over the fog nodes. The study in [25] proposes a483

framework to design services for smart buildings based on edge and fog computing paradigms, where the IoT484

sensors communicate data through the MQTT protocol: this study assumes a potential flexible mapping for485

design purposes but does not propose any specific (optimized) solution to address this issue. The studies in [26]486

and in [27] propose a coordination scheme between cloud and fog nodes applied to a healthcare-driven IoT487

application and to a real-time streaming application, respectively. In these studies, the data sources can choose to488

connect to the fog node or directly to the cloud data center according to specific conditions. However, in our489

solution the sensors always send data to an intermediate fog node to be selected within the fog layer to optimize490

the service performance.491

Among the studies focusing on fog computing applied to the same context of our paper, in [22] a hierarchical492

4-layer fog computing architecture is proposed for big data analysis in smart cities. The layered fog computing493

network exploits the natural characteristic of geo-distribution in big data generated by massive sensors, performing494

latency-sensitive applications and providing quick control loop to ensure the safety of critical infrastructure495

components. In this paper, the mapping between fog nodes and sensors is fixed: each fog node is connected to496

and responsible for a local group of sensors that cover a neighborhood or a small community.497

The study in [28] considers Data Stream Processing (DSP) applications and, specifically, the so called498

operator placement problem, that is the allocation of DSP operator on fog nodes with the goal of optimizing the499

applications Quality of Service (QoS). The optimal DSP placement is modeled as an Integer Linear Programming500

(ILP) problem. In this case the authors made the assumption that it is possible to split the incoming data flow for501

parallel processing, while we consider generic applications where this assumption may not be true.502

As regards the use of Genetic Algorithms (GAs), they have been successfully applied to the context of503

cloud computing in recent literature. The study in [7] exploits GAs to produce a suitable and scalable solution for504

the Software as a Service (SaaS) Placement Problem [7], while Karimi et al. [29] proposes a QoS-aware service505

Version September 11, 2019 submitted to Algorithms 16 of 17

composition for cloud computing systems based on GAs. A previous version of the paper by the same authors506

was presented in [8], proposing the use of a GA-based heuristic to map data flows over the fog nodes. However,507

this paper represents a clear step ahead with respect to the previous work, with improvements regarding both the508

theoretical contribution and the experimental setup, including new scenarios and sensitivity analysis.509

6. Conclusions and future work510

This paper presents a solution based on fog computing to address the issues of the typical scenario of a511

smart city where sensors or smart devices disseminated over a geographic area produce a large amount of data.512

We pointed out that a traditional cloud infrastructure, with all data flows converging on a single cloud data center513

(or, at most, on few data centers) is at risk of network congestion. Moreover, as some applications in such514

scenario are latency-sensitive (e.g. applications related to automated traffic management) or produce a bulk of515

data that could create congestion at the network level (e.g., widespread sensors for environmental analysis) the516

most suitable approach is to exploit a layer of intermediate fog nodes located as close as possible to the data517

sources to perform pre-processing (e.g., filtering and aggregation) or latency-critical tasks.518

The innovative paradigm of fog computing opens several new issues. In this paper we focus on the problem519

of how to map the data streams produced by the sensors over the fog nodes. We provided a formal model for520

the problem of minimizing the overall latency experienced in the system, considering both data transfer and521

processing times. Furthermore, we proposed an heuristic algorithm, based on genetic programming to solve the522

problem without the need to rely on an external solver.523

The proposed solution is evaluated in the context of a realistic smart-city scenario. The experiments show524

the excellent performance of the proposed genetic algorithm to solve the mapping problem. Moreover, different525

evolutionary strategies and genetic operators are compared to identify the best performing one in the considered526

scenario. Finally, we demonstrate the stability of the proposed heuristic through a sensitivity analysis on its main527

parameters, such as the number of generations, the probability of mutation and crossover, and the population size.528

As future work, we plan to extend the current research taking into account more complex scenarios that529

involve dynamic changes in the workload, for example to introduce mobility in the data sources or to consider530

adaptive sampling techniques at the sensor level producing dynamic outgoing data rate. To support these news531

scenarios, we plan to provide contributions not only in terms of the definition of the topology but also at the level532

of adaptive algorithms proposal.533

534

1. Liu, J.; Li, J.; Zhang, L.; Dai, F.; Zhang, Y.; Meng, X.; Shen, J. Secure intelligent traffic535

light control using fog computing. Future Generation Computer Systems 2018, 78, 817 – 824.536

doi:https://doi.org/10.1016/j.future.2017.02.017.537

2. Sasaki, K.; Suzuki, N.; Makido, S.; Nakao, A. Vehicle control system coordinated between cloud and mobile edge538

computing. 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2016,539

pp. 1122–1127.540

3. Yi, S.; Li, C.; Li, Q. A Survey of Fog Computing: Concepts, Applications and Issues. Proceedings541

of the 2015 Workshop on Mobile Big Data; ACM: New York, NY, USA, 2015; Mobidata ’15, pp. 37–42.542

doi:10.1145/2757384.2757397.543

4. Dastjerdi, A.V.; Buyya, R. Fog Computing: Helping the Internet of Things Realize Its Potential. Computer 2016,544

49, 112–116.545

5. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal Workload Allocation in Fog-Cloud Computing Toward546

Balanced Delay and Power Consumption. IEEE Internet of Things Journal 2016, 3, 1171–1181.547

6. Yousefpour, A.; Ishigaki, G.; Jue, J.P. Fog Computing: Towards Minimizing Delay in the Internet of Things. 2017548

IEEE International Conference on Edge Computing (EDGE), 2017, pp. 17–24. doi:10.1109/IEEE.EDGE.2017.12.549

7. Yusoh, Z.I.M.; Tang, M. A penalty-based genetic algorithm for the composite SaaS placement problem in the Cloud.550

IEEE Congress on Evolutionary Computation, 2010, pp. 1–8. doi:10.1109/CEC.2010.5586151.551

8. Canali, C.; Lancellotti, R. A Fog Computing Service Placement for Smart Cities based on Genetic Algorithms. Proc.552

of International Conference on Cloud Computing and Services Science (CLOSER 2019); , 2019.553

https://doi.org/https://doi.org/10.1016/j.future.2017.02.017
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/IEEE.EDGE.2017.12
https://doi.org/10.1109/CEC.2010.5586151

Version September 11, 2019 submitted to Algorithms 17 of 17

9. Bigi, A.; Veratti, G.; Fabbi, S.; Ziven, O.; Po, L.; Ghermandi, G. Forecast of the impact by local emissions at an urban554

micro scale by the combination of lagrangian modelling and low cost sensing technology: the TRAFAIR project.555

Proc. of 19th International conference on Harmionisation within Atmospheric Dispersion Modelling for Regulatory556

Purposes; , 2019.557

10. Shojafar, M.; Canali, C.; Lancellotti, R. A Computation- and Network-Aware Energy Optimization Model for Virtual558

Machines Allocation. Proc. of International Conference on Cloud Computing and Services Science (CLOSER 2017);559

, 2017.560

11. Shojafar, M.; Canali, C.; Lancellotti, R.; Abolfazli, S. An Energy-aware Scheduling Algorithm in DVFS-enabled561

Networked Data Centers. Proceedings of the 6th International Conference on Cloud Computing and Services Science562

- Volume 1 and 2, 2016, CLOSER 2016.563

12. Noshy, M.; Ibrahim, A.; Ali, H. Optimization of live virtual machine migration in cloud computing: A survey and564

future directions. Journal of Network and Computer Applications 2018, 110, 1–10. doi:10.1016/j.jnca.2018.03.002.565

13. Duan, H.; Chen, C.; Min, G.; Wu, Y. Energy-aware scheduling of virtual machines in heterogeneous cloud computing566

systems. Future Generation Computer Systems 2017, 74, 142 – 150. doi:https://doi.org/10.1016/j.future.2016.02.016.567

14. Ardagna, D.; Ciavotta, M.; Lancellotti, R.; Guerriero, M. A Hierarchical Receding Horizon Algorithm for568

QoS-driven control of Multi-IaaS Applications. IEEE Transactions on Cloud Computing 2018, pp. 1–1.569

doi:10.1109/TCC.2018.2875443.570

15. Knitro Website. Available at https://www.artelys.com/solvers/knitro/, last accessed on 10th Jul 2019.571

16. Canali, C.; Lancellotti, R. Scalable and automatic virtual machines placement based on behavioral similarities.572

Computing 2017, 99, 575–595. doi:10.1007/s00607-016-0498-5.573

17. Binitha, S.; Sathya, S.S.; others. A survey of bio inspired optimization algorithms. International Journal of Soft574

Computing and Engineering 2012, 2, 137–151.575

18. Back, T.; Fogel, D.; Michalewicz, Z. Evolutionary Computation 1: Basic Algorithms and Operators; CRC Press,576

2002.577

19. DEAP: Distributed Evolutionary Algorithms in Pyton, 2018. – https://deap.readthedocs.io.578

20. Cicirello, V.A.; Smith, S.F. Modeling GA Performance for Control Parameter Optimization. Proceedings of the 2nd579

Annual Conference on Genetic and Evolutionary Computation; Morgan Kaufmann Publishers Inc.: San Francisco,580

CA, USA, 2000; GECCO’00, pp. 235–242.581

21. AMPL: Streamlined Modeling for Real Optimization, 2018. – https://ampl.com/.582

22. Tang, B.; Chen, Z.; Hefferman, G.; Wei, T.; He, H.; Yang, Q. A Hierarchical Distributed Fog Computing Architecture583

for Big Data Analysis in Smart Cities. Proceedings of the ASE BigData & SocialInformatics 2015; ACM: New York,584

NY, USA, 2015; ASE BD&SI ’15, pp. 28:1–28:6. doi:10.1145/2818869.2818898.585

23. Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog Orchestration for Internet of Things Services.586

IEEE Internet Computing 2017, 21, 16–24. doi:10.1109/MIC.2017.36.587

24. Al-khafajiy, M.; Baker, T.; Al-Libawy, H.; Maamar, Z.; Aloqaily, M.; Jararweh, Y. Improving fog computing588

performance via Fog-2-Fog collaboration. Future Generation Computer Systems 2019, 100, 266 – 280.589

25. Ferrández-Pastor, F.J.; Mora, H.; Jimeno-Morenilla, A.; Volckaert, B. Deployment of IoT Edge and Fog Computing590

Technologies to Develop Smart Building Services. Sustainability 2018, 10.591

26. Maamar, Z.; Baker, T.; Faci, N.; Ugljanin, E.; Khafajiy, M.A.; Burégio, V. Towards a Seamless Coordination of592

Cloud and Fog: Illustration through the Internet-of-Things. Proc. of the 34th ACM/SIGAPP Symposium on Applied593

Computing, 2019, SAC ’19.594

27. Nair, B.; Saira Bhanu, S.M. Fog-Cloud Collaboration for Real-Time Streaming Applications: FCC for RTSAs. In595

Handbook of Research on the IoT, Cloud Computing, and Wireless Network Optimization; IGI Global, 2019.596

28. Cardellini, V.; Grassi, V.; Lo Presti, F.; Nardelli, M. Optimal Operator Placement for Distributed Stream Processing597

Applications. Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems; ACM:598

New York, NY, USA, 2016; DEBS ’16, pp. 69–80. doi:10.1145/2933267.2933312.599

29. Karimi, M.B.; Isazadeh, A.; Rahmani, A.M. QoS-aware Service Composition in Cloud Computing Using Data600

Mining Techniques and Genetic Algorithm. J. Supercomput. 2017, 73, 1387–1415. doi:10.1007/s11227-016-1814-8.601

c© 2019 by the authors. Submitted to Algorithms for possible open access publication under the terms and conditions of the602

Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).603

https://doi.org/10.1016/j.jnca.2018.03.002
https://doi.org/https://doi.org/10.1016/j.future.2016.02.016
https://doi.org/10.1109/TCC.2018.2875443
https://www.artelys.com/solvers/knitro/
https://doi.org/10.1007/s00607-016-0498-5
https://doi.org/10.1145/2818869.2818898
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1007/s11227-016-1814-8
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem definition
	Mapping problem
	Optimization model

	Heuristic algorithm
	Genetic Algorithms overview
	Selection operator
	Mutation operator
	Crossover operator
	GA-based problem model

	Experimental results
	Experimental testbed
	Comparison of Solver and GA-based approaches
	Convergence analysis of GAs
	Comparison of evolutionary strategies and operators
	Sensitivity to population size
	Sensitivity to mutation and crossover probability

	Related work
	Conclusions and future work
	References

