
Noname manuscript No.
(will be inserted by the editor)

Exploiting Ensemble Techniques for Automatic Clustering

of Virtual Machine Clustering in Cloud Systems

Claudia Canali · Riccardo Lancellotti

the date of receipt and acceptance should be inserted later

Abstract Cloud computing has recently emerged as a new paradigm to provide com-

puting services through large-size data centers where customers may run their appli-

cations in a virtualized environment. The advantages of cloud in terms of flexibility

and economy led many enterprises to migrate from local data centers to cloud plat-

forms, thus contributing to the success of such infrastructures. However, as size and

complexity of cloud infrastructures grows, new scalability issues arises in the mon-

itoring and management of resources. Available solutions to cope with such issues

typically consider every Virtual Machine (VM) as a black box each with independent

characteristics, and face scalability issues by reducing the number of monitored re-

sources, considering in most cases only the CPU usage patterns. We claim that scal-

ability issues can be addressed by leveraging the similarity between VMs in terms

of resource usage patterns. In this paper, we propose an automated methodology to

cluster similar VMs starting from their usage information about multiple resources,

assuming no knowledge of the software executed on them. This is an innovative

methodology that combines the Bhattacharyya distance and ensemble techniques to

provide a stable evaluation of similarity between probability distributions of multiple

VM resource usage, considering both system- and network-related data.

We evaluate the methodology through a set of experiments on data coming from

an enterprise data center. We show that our proposal achieves high and stable perfor-

mance in automatic VMs clustering, with a reduction in the amount of data collected

of one order of magnitude which allows to lighten the monitoring requirements of a

cloud data center.

Keywords clustering; clustering ensemble; bhattacharyya distance; cloud comput-

ing

Department of Engineering “Enzo Ferrari”

University of Modena and Reggio Emilia

E-mail: {claudia.canali, riccardo.lancellotti}@unimore.it

1 Introduction

In the few last years, the rapid growth in demand for modern applications combined

with the shift to the Cloud computing paradigm have led to the establishment of

large-scale virtualized data centers following the so-called Infrastructure as a Ser-

vice (IaaS) paradigm. The growing popularity of the cloud is a catalyst for the mi-

gration from traditional data center, with traditional server consolidation strategies to

IaaS cloud data centers. This migration process is testified by the abundance of cloud

scenarios characterized by long-term commitments, where customers outsource their

data centers to a cloud provider purchasing VMs for extended periods of time (for

example, using the Amazon so-called reserved instances). This scenario is and is ex-

pected to be a significant part of the cloud ecosystem also in the future [13]. The final

result is a scenario where virtualization-based data centers host several customers

applications, where each application consists of different software components (e.g.,

the tiers of a multi-tier Web application). In a virtualized data center, each physical

server hosts multiple virtual machines (VMs) running different software components

with complex and heterogeneous resource demand behavior. As we consider long

term commitments of cloud costumers, VMs tend to not change frequently the soft-

ware component they are running and VMs are acquired or released with relatively

low frequency.

Due to the rapid increase in size and complexity of IaaS infrastructures, the pro-

cesses of monitoring and managing cloud data centers are becoming challenging

tasks. The monitoring process presents scalability issues due to the amount of data

to collect and store when a large number of VMs is considered, each with several

resources (e.g., CPU, memory, network) which are monitored with high sampling

frequency [2]. Management strategies assume that each VM is a stand-alone object,

whose behavior is independent from the other VMs of the cloud infrastructure, and

take decisions on the basis of information coming from the resource monitoring sys-

tem, thus not scaling well due to the large amount of data to analyze [31].

A typical approach to address the scalability issues about monitoring and manage-

ment of a cloud data center is to reduce the problem size. Available solutions tend to

reduce the number of VM resources that are taken into account, typically considering

only CPU-related information [4,16,31]. However, this approach is likely to suffer

from important drawbacks, because limiting the monitoring to the CPU resource may

not be sufficient to support VM consolidation when I/O bound or network bound ap-

plications are involved. This motivates the need of a scalable collection of data about

multiple resources to support management in cloud data centers [24].

We argue that the scalability of monitoring and management in cloud infrastruc-

tures may be addressed by leveraging the similarity between VM behaviors, consid-

ering VMs not as stand-alone objects but as members of classes composed by objects

which are running the same software component (e.g., Web servers or DBMS). In

particular, we recall that we focus ona cloud scenario characterized by long-term

commitments, where customer VMs change the software component they are run-

ning with a relatively low frequency, in the order of weeks or months. Once iden-

tified classes of similar VMs, we may improve monitoring scalability by focusing

fine-grained observations only on a few representative VMs for each class.

The main contribution of this paper is the proposal of an automated methodology

to cluster together similar VMs in a private IaaS cloud data center on the basis of their

resource usage. Our approach is consistent with the IaaS vision [32,37] as it does not

require any direct knowledge of the application logic inside a software component,

but it only relies on the information about OS-level resource usage of each VM.

Furthermore, we aim to guarantee high performance in the VM clustering and, even

more important, we aim to guarantee stable performance, that is we ensure that the

clustering outcome is scarcely dependent on the parameters of the methodology.

The proposed methodology exploits the distance of Bhattacharyya [10], a statisti-

cal technique measuring the similarity of different discrete probability distributions,

to define the similarity between VMs and determine which VMs are following the

same behavioral patterns. A further qualifying point of our proposal is the use of

clustering ensemble techniques to improve the stability of the methodology perfor-

mance by integrating a quorum-based mechanism into the clustering process.

A main advantage of our methodology is that we take into account multiple re-

sources, including network and memory related information, differently from most

of the current solutions, which mainly consider CPU-related information. To the best

of our knowledge, the proposal of techniques for automatically clustering VMs with

similar behavior is a new problem, only recently analyzed in [7,6,8]. However, the

solutions that model VM behavior using the correlation between the metrics provide

poor performance in the presence of short time series and in the case where some

VMs remain idle for periods of time [7,6]. On the other hand, available solutions

based on the Bhattacharyya distance have performance that depend heavily on the

parameters used when computing such distance. Our proposal outperforms all these

solutions and provides a major advantage in the performance stability with respect to

the previous results. We apply the proposed methodology to a dataset coming from

an enterprise private cloud environment with VMs running Web servers and DBMS

software. We show that our methodology can achieve high performance in clustering

VMs, with a reduction in the amount of collected data samples by an order of mag-

nitude. Furthermore, we demonstrate that exploiting ensemble techniques to merge

together multiple clustering solutions is of key importance to obtain stable perfor-

mance in the clustering process.

The remainder of this paper is organized as follows. Section 2 presents the ref-

erence scenario and motivates our proposal, while Section 3 describes the proposed

methodology for automatically clustering VMs in a cloud environment. Section 4 de-

scribed the experimental testbed used to evaluate our methodology, while Section 5

presents the case study used to evaluate our methodology and describes the results

of our experiments. Section 6 discusses the related work and Section 7 concludes the

paper with some final remarks.

2 Motivation and reference scenario

We now provide a motivating example for our proposal. We consider a multi-tier Web

application characterized by a high degree of horizontal replication. In our example

we have an application for e-health deployed on 110 VM, with a nearly half of the

VM devoted to the back-end tier and the other half supporting the front.end tier. The

application is used by ***X*** users, with the typical usage patterns characterized

by high resource utilization in the office hours and lower utilization during the night.

We consider that this application is meant to be migrated from a traditional data center

to a cloud platform. This scenario is a typical case where moving to a IaaS platform

involves long term commitments, that is the VM are unlikely to change in number

and in functions for ling periods of time. As the cloud provider has no knowledge

on the characteristics of each VM, the most straightforward option to provide a clear

picture of the application status is to monitor every VM at the deepst level of detail.

Assuming that monitoring considers K metrics for each VM that are collected with a

frequency of 1 sample every 5 minutes, we have to manage a volume of data 288 ·K
samples per day per VM. Considering our scenario with 110 VMs, the total amount

of data is in the order of 3.2 × 104 ·K samples per day. Our proposal identifies two

sets of VM with different behavior and monitors at the granularity of 5 minutes only

a few representative VMs per class, while the remaining VMs can be monitored with

a coarse-grained granularity, for example of 1 sample every few hours. Assuming to

select 3 representatives for each of the 2 VM classes the amount of data to collect after

clustering is reduced to 17.2× 102 ·K samples per day for the class representatives;

for the remaining 104 VMs, assuming to collect one sample of the K metrics every

6 hours for VM, the data collected is in the order of 4.2 × 102 ·K samples per day.

Hence, we observe that our proposal may reduce the amount of data collected by

nearly a factor of 15, from 3.2× 104 ·K to 21.4× 102 ·K.

As a side note it is worth to observe that, while our experimental evaluation will

focus on this case study, Web applications are not the only type of applications that

can benefit from our approach: every information system characterized by highly

replicated components can benefit from our proposal when is migrated from a tradi-

tional data center to a IaaS cloud platform.

Let us now detail how the proposed approach to monitoring ca be integrated in

a IaaS cloud system. We recall that monitoring is aimed to support efficient use of

the system resources, while avoiding overload conditions on the physical servers. We

consider a management strategy for the cloud system which consists of two mecha-

nisms, as in [17]: (a) a reactive VM relocation that exploits live VM migration when

overloaded servers are detected [38]; (b) a periodic consolidation strategy that places

customer VMs on as few physical servers as possible to reduce the infrastructure

costs and avoid expensive resource over provisioning [3,30].

The consolidation task is carried out periodically with the aim to produce an

optimal (or nearly optimal) VM placement which reduces the number of shared hosts.

Existing consolidation decision models typically try to predict VM workload over a

planned period of time (e.g., few hours) based on resource usage patterns observed on

past measurements, that are usually carried out with a fine-grained granularity (e.g.,

5-minute intervals) [3,30].

The proposed methodology aims to address cloud monitoring scalability issues

by automatically clustering similar VMs. The main goal is to cluster together VMs

running the same software component of the same customer application, and there-

fore showing similar behaviors in terms of resource usage. For each identified class,

Fig. 1 Cloud system

only few representative VMs are monitored with fine-grained granularity to collect

information for the periodic consolidation task, while the resource usage of the other

VMs of the same class is assumed to follow the representatives behavior. On the other

hand, the non representative VMs of each class are monitored with coarse-grained

granularity to identify behavioral drifts that could determine a change of class. At

the same time, sudden changes leading to server overload are handled by the reactive

VM relocation mechanism. This approach allows to significantly reduce the amount

of information collected for periodic consolidation strategies.

The process of VM clustering is carried out periodically with a frequency that

allows to cope with changes in the VM classes. We recall that our reference scenario

is a cloud environment characterized by long-term commitment between cloud cus-

tomers and providers, where we can assume that the software component hosted on

each VM changes with a relatively low frequency in the order of weeks or months.

Hence, clustering can be carried out with a low periodicity (e.g., once every one or

few weeks). Furthermore, the clustering may be triggered when the number of ex-

ceptions in VMs behavior exceeds a given threshold, where for exception we mean

newly added VMs or clustered VMs that changed their behavior with respect to the

class they belong to. Anyway, a precise determination of the activation period or

strategy of the clustering process is out of the scope of this paper.

Figure 1 depicts the reference scenario. The scheme represents a cloud data cen-

ter where each physical server, namely host, runs several VMs. On each host we have

an hypervisor, with a monitor process that periodically collects resources usage time

series for each VM. The collected data are sent to the time series aggregator running

on the host. The time series aggregator selects the data to be communicated (with

different periodicity) to the clustering engine, which executes the proposed method-

ology to automatically cluster VMs, and to the cloud controller, which is responsible

for running the consolidation strategy. On each host we have also a local manager,

which performs two tasks. First, it is responsible for taking decisions about live VM

migration to trigger in case of host overload [38]. Second, it executes the consolida-

tion decisions periodically communicated by the cloud controller.

Let us now consider the dynamics occurring in the considered cloud system to

support VM clustering and server consolidation. The process of VM clustering starts

from the collection of time series describing the resources usage for each VM over a

certain period of time. The monitor processes are responsible for this data collection.

Then, the time series aggregators of each host send the data to the clustering engine,

which executes the proposed methodology with the aim to cluster together VMs be-

longing to the same customer application and running the same software component.

Once the clustering is complete, few representative VMs are selected for each class.

It is worth to note that more than two representatives (at least three) should be se-

lected for each class, due to the possibility that a selected representative unexpect-

edly changes its behavior with respect to its class: quorum-based techniques can be

exploited to cope with byzantine failures of representative VMs [9]. When only one

VM is changing its behavior, we can still use the remaining two representatives to

identify the rogue VM and to preserve a description of the cluster.

The information on VM classes and selected representatives are sent to the time

series aggregators on each host and to the cloud controller for periodic consolidation

task. The time series aggregators selectively collect the resource time series of the

representative VMs of each class, then send the data to the cloud controller. This

latter component carries out the consolidation task, exploiting the resource usage of

the representative VMs to characterize the behavior of every VM of the same class.

The consolidation decisions are finally communicated to the local managers on each

host to be executed.

3 Methodology

In this section we describe the methodology to automatically cluster VMs in a cloud

data center on the basis of the usage information about multiple resources. For each

customer application, we aim to group together VMs which are running the same

software component (e.g., VMs belonging to the same tier of a Web application), and

are therefore showing similar behaviors in term of resource usage.

We recall that our reference scenario is a private cloud where we assume that

the software components hosted on each VM do not change for long periods of time

(i.e., they remain the same for months), and VMs are seldom acquired or released.

The process of clustering similar VMs and the related collection of data about VM

resource usage is carried out periodically with a frequency that allows to cope with

changes in the VM behavior, for example once every several weeks. Hence, the actual

computational cost of the methodology is not considered as critical, due to its low

invocation frequency.

The main benefit achievable through the proposed methodology is to improve

the scalability of resource usage monitoring to support data center management and

server consolidation by means of VMs clustering. Indeed, we may select some rep-

resentative VMs for each class and perform fine-grained monitoring only on these

representatives. The resource usage of the representatives is used to describe every

VM belonging to the same class, while the remaining VMs can be monitored accord-

ing to a more coarse-grained approach, with a meaningful reduction in the amount

collected data. The choice to consider more than one representative for each class

is due to the possibility that a selected class representative unexpectedly changes its

behavior with respect to the class it belongs to. When more than one representative

is used, quorum-based techniques can be exploited to identify a misbehaving VM

within the list of representatives.

To measure the behavior similarity between VMs, the proposed methodology ex-

ploits the Bhattacharyya distance. This statistical technique determines the similarity

between two probability distributions: in our case, we consider the probability distri-

butions of the usage samples of the considered resources, that we will call metrics.

We should consider that the Bhattacharyya distance provides per-metric distances

between VMs. Hence, the similarity of different VMs is represented through a multi-

dimensional distance, leaving open the issue of how to merge such information for

the clustering of similar VMs. We address this issue through a technique based on

clustering ensemble, which allows us to merge information about multiple metrics

and improve the stability of the methodology performance with respect to its design

parameters. The clustering ensemble approach will be compared against an alterna-

tive approach, proposed by the authors in [8] and described later in this section, that

reduces the dimensionality of the per-metric set by mapping them into an euclidean

space.

The main steps of the proposed methodology are outlined in the main branch of

Figure 2:

– Extraction of a quantitative model describing the VM behavior

– Generation of a set of Bhattacharyya distance matrices representing VMs simi-

larities for the single metrics

– Per-metric clustering of VMs based on the Bhattacharyya distance matrices

– Clustering ensemble to merge the per-metric clustering solutions

The right branch in Figure 2 presents the alternative approach, namely euclidean

clustering, where the per-metric distance matrices are merged into a single distance

matrix using an euclidean space. The matrix is then fed into a final clustering algo-

rithm.

Throughout the remaining of this section we describe in detail each step of the

proposed methodology and of the considered alternative approach.

3.1 Extraction of quantitative model for VM behavior

We now formally define the quantitative model chosen to represent the behavior of

each VM, and discuss a critical design choice involved in this step.

Given a set of N VMs, the first step of the methodology aims at representing the

behavior of each VM n, ∀n ∈ [1, N], taking into account for a set of M metrics,

where each metric m ∈ [1,M] represents the usage of a VM resource.

Let (Xn
1 ,X

n
2 , . . . ,X

n
M) be a set of time series, where Xn

m is the vector consisting

of the samples of the resource usage represented by the metric m of the VM n. We

Fig. 2 Proposed methodology and alternative approach

choose to consider the probability density function p(Xn
m) of each time series as

the description of the behavior of metric m on VM n. We represent the probability

function of a finite-length time series through a normalized histogram. The histogram

is composed by bins, each associated to an interval of values the metric can take. Each

bin represents the frequency of samples for the considered interval, that is the fraction

of samples from the time series that fall within the bin interval.

If Bm is the number of bins considered for metric m, the normalized histogram

from the time series Xn
m is a set Hn

m = {hn
b,m∀b ∈ [1, Bm]}, where hn

b,m is the value

associated to the b-th histogram bin and defined as:

hn
b,m =

|{x ∈ X
n
m : x > X l

m(b), x ≤ XU
m(b)}|

|Xn
m|

where |{x ∈ X
n
m : x > X l

m(b), x ≤ XU
m(b)}| is the number of samples in the

interval [X l
m(b), XU

m(b)] and |Xn
m| is the number of samples in the time series. The

upper and lower bounds of the bin b are defined as: X l
m(b) = Xminm+(b−1)∆xm

and XU
m(b) = Xminm + b∆xm, where Xminm is the minimum value of metric m

for every VM, Xmaxm is the maximum value of metric m for every VM, and ∆xm

is the width of each bin for metric m, that is ∆xm = Xminm−Xmaxm

Bm
. Figure 3

provides a graphical example of the above defined histogram. This definition ensures

that for each metric m the number of bins is the same for every VM. This latter

property is fundamental because in the following steps of the methodology we need

to compare same sized histograms referring to different VMs.

Fig. 3 Histogram example

The extraction of the quantitative model raises a critical design choice which may

affect the final outcome of the clustering process, that is the determination of the

number of bins in each histogram. The difficulty in estimating the number of bins is

due to the heterogeneity of the metrics considered in the VM monitoring. As there

is no a universally accepted way to define the “best” number of bins, we consider

three widely adopted rules of thumb for the estimation of the number of bins in the

histograms: the Freedman-Diaconis rule [15], the Scott rule [29] and the square root

rule. The impact of the rule choice on the final outcome of the clustering will be

investigated in the experimental evaluation.

The Freedman-Diaconis rule defines the number of bins as a function of the inter-

quartile range of the data set, that is the difference between 1st and 3rd quartile of

the samples. According to the FD rule Bm = 2 IQR(Xm)
3
√

|Xm|
, where |Xm| is the number

of samples in the time series for metric m and IQR(Xm) is the inter-quartile range

of the time series.

The Scott rule determines the number of bins as a function of the standard devi-

ation of the samples. For this reason, the Scott rule is typically adopted for samples

following a Gaussian distribution. According to the Scott rule, we define the number

of bins as Bm = 3.5σm

3
√

|X|
, where σm is the standard deviation of the samples in the

time series for metric m.

The square root rule is adopted in some software for data management and anal-

ysis, including the popular Excel spreadsheet, and simply defines the number of bins

as the square root of the number of samples, that is Bm =
√

|Xm|.

3.2 Generation of Bhattacharyya distance matrices

The second step of the methodology consists in building a set of distance matrices to

define similarities between VMs starting from the histogram-based representation of

the VM behavior for each single metric.

To build this set of per-metric distance matrices we exploit the Bhattacharyya

distance [5], which is used to measure the similarity between two data sets based

on their probability distribution. The Bhattacharyya distance Dm(n1, n2) computed

according to metric m between two VMs n1 and n2 is defined as follows:

Dm(n1, n2) = −ln(
B
∑

b=1

√

hn1

b,m · hn2

b,m)

where hn1

b,m and hn2

b,m are the b-th bin values in the histograms of metric m for VM

n1 and VM n2, respectively. Since the histograms are normalized, the Bhattacharyya

distance may take values ranging from 0 (identical histograms) to ∞ (histograms

where the product of every pair of bins is 0), as shown in Figure 4.

Fig. 4 Bhattacharyya distance example

The distances between each couple of VMs for any given metric m are organized

in a set of matrices Dm, m ∈ [1,M]. Due to the nature of the Bhattacharyya distance,

each of these distance matrices is symmetrical and the elements on the main diagonal

have zero value.

3.3 Per-metric clustering on distance matrices

This step of the methodology aims to obtain a clustering solution from each per-

metric distance matrix Dm, m ∈ [1,M]. To this aim, we need to transform each

distance matrix Dm into a similarity matrix Sm. This step is carried out by apply-

ing a Gaussian kernel operator, that is a common approach to translate distance into

similarity [12]. Specifically, we define the similarity as si,j = e
−d2

i,j

σ2 , where di,j is

an element of a distance matrix and σ is a blurring coefficient of the kernel func-

tion [20], typically set to the value of 0.5. Preliminary analyses on the impact of the

σ coefficient on the clustering results suggest that the choice of this parameter is not

critical for the performance of the clustering algorithms.

To cluster together elements starting from a similarity matrix, traditional algo-

rithms based on coordinate systems (such as k-means or kernel k-means) are not

viable options. On the other hand, spectral clustering is widely adopted in these cir-

cumstances because it is explicitly designed to manage as input a similarity matrix or

a matrix-based representation of graphs [19,28].

The spectral clustering algorithm computes the Laplacian operator from the input

similarity matrix. The eigenvalues and eigenvectors of the Laplacian are then used

to extract a new coordinate system that is fed into a k-means clustering phase [22].

About this last phase of the clustering process, we must recall that the k-means al-

gorithm starts with a random set of centroids. To ensure that the k-means result is

not affected by local minimums, we iterate the k-means multiple times and we com-

pare the ratio between the sum of squares of the distances among elements belonging

to different clusters (inter-cluster) and elements belonging to the same cluster (intra-

cluster). Then, we finally select the best solution across multiple k-means runs, that is

the solution maximizing inter-cluster distances and minimizing intra-cluster distance.

The output of the clustering is one vector Cm for each metric m ∈ [1,M], where

the n-th element cnm is the identifier of the cluster to which the VM n is assigned.

3.4 Clustering ensemble

The final step of clustering ensemble combines the set of M clustering solutions

Cm, m ∈ [1,M], into a co-occurrence matrix A. The matrix A stores for each pair

of VMs n1 and n2 the number of clustering solutions where n1 and n2 occurs in the

same cluster, divided by the total number of clustering solutions M .

The co-occurrence matrix represents a measure of the affinity between the VMs

and is used as a similarity matrix for a subsequent clustering step [33]. Again, we use

the spectral clustering to create the final clustering solution Cs, that groups together

similarly behaving VMs. The use of clustering ensemble aims to improve the stability

of the clustering solution with respect to the parameters of the methodology, such as

the number of bins or the length of the time series used. Indeed, merging multiple

clustering solutions in such way implements a sort of quorum-based decision system,

which is likely to improve the robustness of the clustering performance [18,19].

3.5 Alternative approach

The euclidean clustering is an alternative approach to the above presented methodol-

ogy which has been previously proposed in [8]. The euclidean clustering, depicted in

the right branch of Figure 2, aims to combine the M Bhattacharyya distance matrices

Dm to build a single distance matrix expressing the distances among all VMs. To this

aim, we consider that the set of Bhattacharyya distance matrices represent a multi-

dimensional distance between the VMs. To reduce the dimensionality of the problem

from M to 1, we combine the multiple dimensions as if we were in an euclidean

space. Hence, we define a multimetric-based distance between VMs as the sum of

squares of the corresponding Bhattacharyya distances for each metric, that is:

De(n1, n2) =

√

√

√

√

M
∑

m=1

Dm(n1, n2)2

whereDm(n1, n2) is Bhattacharyya distance between n1 and n2 according to metrics

m.

The new euclidean distance matrix De is then fed into the spectral clustering

algorithm to obtaining the final solution Ce of the euclidean clustering approach.

4 Experimental testbed

*** DA SPOSTARE **** Let us now describe the application of the proposed method-

ology to the considered case study. The methodology has been implemented using

popular technologies for data management and analysis. Specifically, we use the R

language 1 for the statistical analysis functions, Python 2 for the task of reading and

writing data, and as a wrapper for the R core. Finally, we use Bourne shell 3 to invoke

the main steps of the methodology. These choices ensure that our proposal can be

easily deployed directly in currently available cloud infrastructures.

To evaluate the performance of the proposed methodology, we consider a dataset

coming from an enterprise data center supporting one customer Web-based applica-

tion deployed according to a multi-tier architecture. The data center is composed of

10 nodes on a Blade-based system and exploits virtualization to support the Web ap-

plication. The nodes host 110 VMs that are divided between two classes: Web servers

and back-end servers (that are DBMS).

We collect detailed data about the resource usage of every VM for different peri-

ods of time, ranging from 1 to 180 days. The samples are collected with a frequency

of 5 minutes. For each VM we consider 10 metrics describing the usage of differ-

ent resources related to CPU, memory, disk, and network. The complete list of the

metrics is provided in Table 1 along with a short description.

Table 1 Virtual machine metrics

Metric Description

X1 SysCallRate Rate of system calls [req/sec]

X2 CPU CPU utilization [%]

X3 DiskAvl Available disk space [%]

X4 CacheMiss Cache miss [%]

X5 Memory Physical memory utilization [%]

X6 PgOutRate Rate of memory pages swap-out [pages/sec]

X7 InPktRate Rate of network incoming packets [pkts/sec]

X8 OutPktRate Rate of network outgoing packets [pkts/sec]

X9 AliveProc Number of alive processes

X10 ActiveProc Number of active processes

To the above metrics, we apply the methodology described in Section 3. For each

metric m of VM n we compute the normalized histogram H
n
m, expressing the be-

havior of the VM according to considered metric. Then, the generated histograms

are used to compute the per-metric Bhattacharyya distance matrix Dm, representing

the distances between each pair of VMs according to metric m. The next step of the

proposed ensemble approach applies the spectral clustering to each distance matrix

Dm. We run 103 times the internal k-means clustering and we select the best solution

(as described in Section 3.3) which represents the per-metric clustering solution Cm.

Finally, we carry out the ensemble of the per-metric clustering solutions, creating the

1 R project home page: http://www.r-project.org/
2 Python home page: http://www.python.org/
3 Bourne shell home page: http://www.gnu.org/software/bash/

co-occurrence matrix and applying on it the final spectral clustering step to produce

the final vector solution Cs.

We also implement the alternative approach based on euclidean clustering. In this

case, we take the Bhattacharyya distance matrices Dm produced as output of the

second methodology step, and compute the multimetric-based distance matrix De,

which represent the distance between each pair of VMs as if we were in an euclidean

space. A final step of spectral clustering is applied to the matrix De and produces the

final vector solution Ce.

To evaluate the performance of the proposed clustering methodology, we consider

as the main metric the clustering purity [1]. Purity, that is one of the most popular

metrics for cluster evaluation, considers the fraction of correctly identified VMs as the

measure of the clustering performance. Specifically, purity is defined by comparing

the generic final solution C of the VM clustering with the ground truth vector C∗,

which represents the correct classification of Web servers and DBMS servers into two

clusters. Purity is thus defined as:

purity =
|{cn : cn = cn∗, ∀n ∈ [1, N]}|

N

where cn is the cluster to which VM n is assigned in the considered solution, cn∗ is

the correct classification of VM n, and N is the number of clustered VMs.

**** Questo andrebbe spostato nella sezione 2 **** To understand the benefits

for the monitoring system achievable through the proposed methodology, it is inter-

esting to determine the potential reduction in the amount of data collected to support

consolidation in the described scenario. Assuming that the global consolidation strat-

egy considers K metrics for each VM that are collected with a frequency of 1 sample

every 5 minutes, we have to manage a volume of data 288 · K samples per day per

VM. Considering our scenario with 110 VMs, the total amount of data is in the order

of 3.2 × 104 · K samples per day. After the clustering, we need to continue moni-

toring every 5 minutes only a few representative VMs per class, while the remaining

VMs can be monitored with a coarse-grained granularity, for example of 1 sample

every few hours. Assuming to select 3 representatives for each of the 2 VM classes,

as described in Section 2, the amount of data to collect after clustering is reduced to

17.2 × 102 · K samples per day for the class representatives; for the remaining 104

VMs, assuming to collect one sample of the K metrics every 6 hours for VM, the

data collected is in the order of 4.2 × 102 · K samples per day. Hence, we observe

that our proposal may reduce the amount of data collected by nearly a factor of 15,

from 3.2× 104 ·K to 21.4× 102 ·K. ****

5 Performance evaluation

In this section, we apply the proposed methodology to the described testbed to evalu-

ate the performance of automatically clustering similar VMs based on their resource

usage. The main goals of this experimental evaluation are:

– To evaluate the performance of the proposed methodology, based on clustering

ensemble, and compare it with the alternative approach, based on the euclidean

distance between VMs

– To investigate the sensitivity of the methodology performance with respect to the

number of histogram bins used to generate the quantitative description of VM

behavior

– To evaluate the impact on performance of reducing the set of metrics considered

for VM clustering

– To perform a sensitivity analysis of methodology performance and clustering time

with respect to the number of VMs considered for clustering

All experiments evaluate the performance of the methodology considering time

series of VM metric samples of different lengths, ranging from 1 to 180 days. Except

when differently stated, the Friedman-Diaconis rule is used to compute the number

of bins in the histograms of the VM metrics.

5.1 Methodology evaluation

Table 2 shows in the last column (Ensemble) the purity achieved by the proposed

methodology for different time series lengths. The previous columns (from 2 to 11)

of the table report the purity values obtained by clustering VMs on the basis of per-

metric Bhattacharyya distance. The last line of the table presents the average purity

values computed over the different time series lengths. For each line, the highest value

of clustering purity is emphasized in bold font.

Table 2 Purity for ensemble vs. per-metric clustering

Time series Metric

length [days] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Ensemble

180 0.70 1.00 1.00 0.60 0.95 0.75 0.75 0.95 0.95 0.88 1.00

120 0.82 0.90 0.64 0.65 1.00 0.63 1.00 0.75 0.60 0.60 1.00

60 0.82 1.00 0.88 0.66 1.00 0.56 0.94 0.93 0.68 0.65 1.00

40 0.80 0.75 0.80 0.65 0.90 0.60 0.90 0.85 0.65 0.65 0.95

30 0.76 0.80 0.82 0.63 0.85 0.62 0.68 0.88 0.63 0.65 0.91

20 0.76 0.81 0.79 0.62 0.79 0.58 0.87 0.87 0.62 0.69 0.89

15 0.79 0.82 0.79 0.62 0.74 0.62 0.85 0.84 0.62 0.61 0.87

10 0.78 0.81 0.78 0.63 0.71 0.58 0.83 0.84 0.58 0.58 0.86

5 0.78 0.82 0.77 0.65 0.71 0.57 0.80 0.81 0.56 0.58 0.86

4 0.78 0.82 0.76 0.63 0.70 0.57 0.79 0.81 0.56 0.56 0.86

3 0.77 0.81 0.72 0.62 0.68 0.56 0.79 0.80 0.54 0.55 0.85

2 0.76 0.81 0.68 0.58 0.68 0.55 0.78 0.80 0.53 0.54 0.85

1 0.75 0.80 0.68 0.56 0.67 0.55 0.77 0.80 0.52 0.54 0.84

Mean 0.77 0.84 0.78 0.62 0.80 0.59 0.83 0.84 0.63 0.63 0.91

We note that the performance of the ensemble approach always exceeds or (in few

cases) equals the purity achievable by considering per-metric clustering, obtaining a

purity that ranges from 1 to 0.84 as the time series length decreases from 180 to 1

days, with a mean purity value of 0.91. It is worth to note that the purity remain

rather high even for very short time series of only one day, while other proposals in

literature [7] present a performance degradation when the amount of data to describe

the VM behavior is reduced. Some of the single metrics achieve quite poor results,

such as X4 and X6, while other metrics perform better, such as X2 and X8. However,

none of the metrics reaches a mean purity value close to 0.9, while the ensemble

clustering exceeds this value. The reason for the best performance in terms of mean

purity value can be found in the stability of the results of the ensemble clustering: the

purity of the proposed methodology shows a monotonically decreasing behavior for

decreasing time series length, while no other metric presents the same trend. Even the

best-performing metrics show negative peaks of purity in correspondence to certain

time series lengths, for example 120 and 40 days. To investigate the reason of such

negative peaks, we carried out some statistical analysis and we found the presence of

multiple local maxima (modes) in the probability distributions of almost every metric;

the multi-modal nature of the distributions is likely to hinder the performance of the

VM clustering process. The variable behavior showed by the per-metric clustering is

undesirable, because it means that per-metric distances are too sensitive to the length

of the time series and may not give stable results in describing VMs similarities for

clustering purposes. On the other hand, the monotonic decrease of purity achieved

by the ensemble clustering is an expected and desirable behavior, which is due to the

increasing difficulty to correctly associate VMs to the belonging class when shorter

sequences of characterizing measurements are available.

It is worth to analyze in details the results related to the metrics X2 and X5

(representing CPU and memory, respectively), which typically are the only resources

considered in the state-of-the-art for monitoring and management tasks [4,35,16,

31]. From Table 2 we see that the use of these single metrics is not sufficient to

successfully capture the VMs behavior for clustering purposes. For these metrics, the

clustering results not only are worse than the ensemble results for almost every length

of the time series, but they also suffer of excessive sensitivity to this parameter. These

results confirm the need of considering together multiple resources to characterize

VMs behavior for automatic clustering purposes.

5.2 Ensemble vs. euclidean clustering

Let us now compare the results of the proposed ensemble clustering methodology

with the alternative approach based on euclidean clustering. Figure 5 shows the purity

of VM clustering as a function of time series length for the ensemble and euclidean

approaches.

The euclidean approach shows worse and more variable results with respect to the

monotonically decreasing curve of the ensemble clustering, with negative peaks for

120 and 40 days. It is interesting to note that the variable behavior of the euclidean-

based curve reflects the instability of the per-metric contributions previously ana-

lyzed. For example, we can see from Table 2 that basically all the metrics, included

the best-performing ones, present negative peaks corresponding exactly to the time

series lengths of 120 and 40 days. On the other hand, the ensemble clustering, which

implements a quorum-based mechanism, seems to overcome this issue and stabilize

the results over all the time series length.

To better understand why the VM clustering benefits from a quorum-based mech-

anism, we investigate the relationships between the per-metric clustering solutions.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

180 120 60 40 30 20 15 10 5 4 3 2 1

C
lu

st
er

in
g

P
ur

ity

Time series length [days]

Ensemble
Euclidean

Fig. 5 Purity of Ensemble vs. Euclidean clustering

Specifically, we want to evaluate the capability of clustering based on different single

metrics to identify sets of correctly clustered VMs that are not completely overlapped.

To this aim, we exploit the Jaccard Index, also known as the Jaccard similarity coef-

ficient: this index measures the ratio between the size of the intersection and the size

of the union of two sample sets, and it is typically used to compare the sets similar-

ity. For each metric m ∈ [1,M], we consider the per-metric clustering solution Cm.

From Cm we extract the sub-vector C
′

m including only the elements that represent

VMs assigned to the correct cluster identifier according to the ground truth vector

C
∗. We consider the Jaccard index J(m1,m2) between two metrics m1 and m2 as:

J(m1,m2) =
|C′

m1
∩C

′

m2
|

|C′

m1
∪C

′

m2
|

The Jaccard index may take values in the range [0, 1]: a value of J(m1,m2) equal

to 0 means that the clustering solutions for metrics m1 and m2 have no correct VM

assignments in common, while a value of 1 means that the two per-metric clustering

solutions correctly cluster exactly the same set of VMs. Table 3 shows some statistical

properties of the Jaccard Index computed over all the possible pairs of the M metrics

for time series lengths ranging from 1 to 180 days.

Table 3 Similarity of clustering solutions for per-metric distance

Jaccard Time series length [days]

index 180 60 30 15 5 3 1

Mean 0.68 0.62 0.62 0.63 0.55 0.58 0.58

Std. dev. 0.19 0.20 0.16 0.19 0.20 0.18 0.15

The mean value of the Jaccard index is between 0.55 and 0.68 for every time

series length, meaning that each pair of metrics has, on average, a common intersec-

tion of correctly clustered VMs that is between 55% and 68% of the correct solutions

identified by each single metric. Furthermore, we see that the standard deviation never

exceeds 0.20 for every time series length. These results show that the per-metric clus-

tering correct solutions present a common intersection, but this intersection is almost

never complete, being limited to 60% on average. This means that each metric is able

to capture similarities among VMs behavior that are different from the similarities

detected by other metrics. In other words, each metric gives its peculiar contribution

to the quorum-based mechanism which is at the base of the ensemble clustering, thus

contributing to obtain stable performance not achievable by relying on per-metric

clustering or summing up single metric distances, as in the euclidean approach.

Let us now perform a further comparison between ensemble and euclidean clus-

tering approaches: we evaluate the sensitivity of the two approaches to the rule used

to define the number of bins in the generation of metric histograms. For the previous

experiments, we used the Freedman-Diaconis (FD) rule to generate the histograms

of the metric distributions. In this experiment, we compare the purity of ensemble

and euclidean clustering approaches when three different rules are used for the his-

togram generation: Freedman-Diaconis (FD), Scott and Square Root. Figure 6 shows

the results as a function of the time series length.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

180 120 60 40 30 20 15 10 5 4 3 2 1

C
lu

st
er

in
g

P
ur

ity

Time series length [days]

Ensemble (FD)
Ensemble (Scott)
Ensemble (Sqrt)

(a) Ensemble clustering

 0.5

 0.6

 0.7

 0.8

 0.9

 1

180 120 60 40 30 20 15 10 5 4 3 2 1

C
lu

st
er

in
g

P
ur

ity

Time series length [days]

Euclidean (FD)
Euclidean (Scott)
Euclidean (Sqrt)

(b) Euclidean clustering

Fig. 6 Impact of different rules to compute histogram bins number

It appears very clearly from the figure that the rule choice has a completely dif-

ferent impact on the ensemble and euclidean clusterings. The proposed ensemble

approach (Figure 6(a)) achieves very similar results for every rule: the use of the FD

rule leads to slightly better purity, but the curves are all very close for almost every

time series length. On the contrary, the euclidean clustering (Figure 6(b)) appears

to be extremely sensitive to the choice of the rule to compute histograms. We should

consider that Scott and Square Root follows very different criteria to compute the his-

togram characteristics: Square Root determines the number of histogram bins only on

the basis of the number of measurements in the time series, while Scott exploits the

characteristics of the metric distribution. However, in both cases we can see that the

achieved purity decreases significantly whit respect to the FD rule, dropping below

0.6 for several time series lengths.

These results show that the performance of the euclidean clustering is very un-

stable not only, as previously shown, with respect to the time series length, but also

to the choice of the rule for generating histograms. On the other hand, the stability

of the ensemble clustering represents an important result for the applicability of the

proposed methodology for VM clustering in cloud computing environments. Since

there is no a generally accepted “best” rule to determine the histogram bin number

for a given distribution, the stability with respect to the rule choice represents a fun-

damental feature for any automated approach for VM clustering.

5.3 Sensitivity to histogram bin number

In this last experiment, we aim to provide a sensitivity analysis evaluating the stability

of the ensemble clustering performance with respect to the histogram characteristics.

Specifically, we evaluate the clustering purity for different values of histogram bin

number.

We take as a reference points Freedman-Diaconis and Scott rules, because they

share a desirable feature for the automated generation of metric histograms: the num-

ber of bins is computed based on the characteristics of metric distribution, but it is

independent of the time series length, oppositely to the Square Root approach. We

also consider that the number of bins generated according to the Freedman-Diaconis

rule tends to be significantly higher (1 or 2 orders of magnitude) with respect to the

Scott case. For these reasons, we choose to consider an interval of bin numbers which

includes the gap between the two rules, and also explores lower and higher numbers

of bins.

Since the bin numbers generated by Freedman-Diaconis and Scott rules may dif-

fer of orders of magnitude depending on the specific metric, we use a logarithmic

scale to fix the number of bins to consider for the sensitivity analysis. For each met-

ric m ∈ [1,M], BFD
m and BScott

m are the number of bins according to Freedman-

Diaconis and Scott rules, respectively. We choose to evaluate two intermediate points

between the two rules; hence, we use the cube root of the ratio between BFD
m and

BScott
m as the step Πm of the sequence of bin numbers to evaluate:

Πm =

(

BFD
m

BScott
m

)

1

3

, ∀m ∈ [1,M]

We consider the set of vectors Bi, i ∈ [l, U], where each vector Bi represents the

sequence of bin numbers to be used for each metric and is defined as follows:

B
i = {Bi

m : BScott
m × (Πm)i,m ∈ [1,M]}∀i ∈ [l, U]

The values of l and U define the lower and upper bounds for the interval of bin

numbers to evaluate. Since we want to exceed the gap between Freedman-Diaconis

and Scott rules, we consider l = −2 and U = 4. It is worth to note that B0
m = BScott

m

and B3
m = BFD

m for every metric m.

Figure 7 shows the clustering purity as a function of different time series lengths

(x axis) and histogram bin numbers (y axis). We observe that for every bin num-

ber higher that B0 (corresponding to Scott rule) the achieved purity presents simi-

lar behavior, reaching values equal to 1 for the longest time series and decreasing

monotonically as the time series length goes down to 1 day, with a clustering purity

which always remains above 0.82 even for the shorter time series. On the other hand,

the clustering performance significantly decreases for low number of bins (B−1 and

B
−2). Specifically, it is evident that for bin numbers lower than B

0, the performance

decreases with the number of bins, ranging from 0.67 to 0.97 for B−1 and from 0.54

to 0.95 for B−2. The reason for these worse results is related to a too low number of

bins leading to coarse-grained histograms, which are not able to exhaustively capture

the behavior of the VMs.

18012060 40 30 20 15 10 5 4 3 2 1 			B
-2 			B -1 			B0 		B1 		B2 		B3 B4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
lu

st
er

in
g

P
ur

ity

 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

Fig. 7 Clustering purity for different time series lengths and histogram bin numbers

This results strengthens the characteristic of stability of the ensemble clustering

with respect to both the length of the metric time series and the histogram characteris-

tics. Furthermore, an interesting insight on the suitable way to determine the number

of bins of the histograms can be deduced from the observed results. This experiment

suggests that the Freedman-Diaconis rule is the better choice for the generation of the

quantitative VM description. Indeed, the use of the Freedman-Diaconis rule leads to

the highest and most stable clustering purity for every time series length, as shown in

Figure 7. Moreover, using higher number of bins is not desirable because it could eas-

ily increase the computational costs of the Bhattacharyya distances without adding

any gain in the clustering performance. On the other hand, significantly decreasing

the number of bins may cause worse results: in this sense, we can consider the bin

numbers determined by the Scott rule as a sort of low boundary under which the

clustering performance is likely to significantly decrease.

5.4 Sensitivity to metric selection

In this experiment we aim to evaluate how the methodology performance varies

when the number of metrics considered for clustering decreases. To this aim, we con-

sider the purity obtained by clustering VMs on the basis of per-metric Bhattacharyya

distance, which are reported in Table 2, Section 5.1. In Table 4 we sort the metrics

in decreasing order of per-metric clustering purity, averaged over all the time series

lengths (1 to 180 days). We note that the four best performing metrics (in bold in the

table) are related to CPU, memory and I/O resources, which are the main resources

typically considered in the state-of-the-art to characterize VM behavior [4,35,16,31].

Table 4 VM metrics sorted by decreasing clustering purity

Metric Mean purity

X2 CPU 0.84

X8 OutPktRate 0.84

X7 InPktRate 0.83

X5 Memory 0.80

X3 DiskAvl 0.78

X1 SysCallRate 0.77

X9 AliveProc 0.63

X10 ActiveProc 0.63

X4 CacheMiss 0.62

X6 PgOutRate 0.59

To investigate the stability of the methodology performance for different sets of

metrics, we first apply the clustering ensemble methodology considering the basic set

composed of these four metrics (X2, X8, X7, X5); then, we carry out the clustering

ensemble by adding one-by one the remaining metrics as listed in Table 4, that is in

decreasing order of achieved per-metric clustering purity. The results of this experi-

ment carried out for short time series lengths (from 1 to 4 days) are reported in Fig. 8,

where boxes and error bars respectively represent mean and standard deviation of the

clustering purity achieved for different sets of metrics.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 days 3 days 2 days 1 day

C
lu

st
er

in
g

pu
rit

y

Time series length

Mean (Standard Deviation Error Bars)

Fig. 8 Sensitivity to metric selections

From Fig. 8 we observe that the clustering purity remains surprisingly stable for

different sets of metrics for all the considered time series lengths. In particular, the

variation of the clustering purity always remains below 1.5%. For deeper understand-

ing, we show in Table 5 the disaggregate results for short time series (from 4 to 1

days): the clustering purity is reported for different set of metrics, starting from the

basic set of 4 metrics and then adding one metric at the time, as previously described.

Table 5 Clustering purity for different metric selections

Time series Number of Metrics

length [days] 4 5 6 7 8 9 10

4 0.875 0.870 0.868 0.865 0.865 0.862 0.861

3 0.868 0.861 0.859 0.856 0.853 0.852 0.852

2 0.864 0.860 0.858 0.855 0.853 0.851 0.850

1 0.856 0.854 0.851 0.848 0.845 0.842 0.841

As expected, clustering purity monotonically decreases as we pass from the ba-

sic set of the four best performing metrics to all the ten metrics initially considered,

showing however a decrease of only XXX%. This result is important for the applica-

bility of the proposed methodology because it shows how the clustering performance

is not highly dependent on the choice of the metrics, unlike the approach previously

presented in [6]: in the case of ensemble clustering, the inclusion of the main re-

sources related to CPU, memory and network I/O in the set of considered metrics

should guarantee good performance in VM clustering. At the same time, a broader

choice of metrics does not negatively affect the achieved results.

5.5 Sensitivity to VM number

In this last experiment we analyze the sensitivity of the methodology performance

and execution time with respect to the number of VMs to cluster. To this aim, for each

of the 110 VMs we consider multiple time series with the length of one-day (24 hours)

of the four metrics (X2, X8, X7, X5) which constitute the minimum set considered in

the previous example. In this way, we emulate the presence of an increasing number

of VMs to cluster, ranging from 110 to 1100. Fig. 9 shows the achieved purity and

the clustering time as a function of the number of VMs to cluster.

We observe that the clustering purity remains quite stable for increasing number

of VMs, showing a slight decrease from 0.843 to 0.816 as as we increase the VM

number by a factor of 10. As regards the execution time for the clustering phase, we

should consider that the spectral clustering algorithm is executed multiple times in the

proposed ensemble approach: a step of clustering is carried out on each per-metric

distance matrix, then a final clustering is performed on the co-occurrence matrix gen-

erated by the ensemble. Hence, the spectral clustering is executedM+1 times, where

M is the number of metrics considered for clustering (M = 4 in this experiment).

From Fig. 9 we note that the total clustering time linearly increases with the number

of VMs, which is consistent with the known computational cost of the spectral clus-

tering algorithm [23]**** and remains acceptable even for large setups in the order

of ******. Furthermore, the low frequency of invocation of the clustering ensemble

 0.5

 0.6

 0.7

 0.8

 0.9

 1

110 220 330 440 550 660 770 880 990 1100
 5

 10

 15

 20

 25

 30

 35

 40

C
lu

st
er

in
g

P
ur

ity

C
lu

st
er

in
g

T
im

e
[s

ec
]

Number of VM

Clustering Purity
Clustering Time

Fig. 9 Clustering purity and execution time for increasing number of VMs

methodology (e.g., once every one or few weeks), confirms that the execution time

does not represent an issue for the applicability of the methodology to large cloud

data centers.

5.6 Summary of results

The experimental results presented in this section can be summarized as follows:

– The proposed methodology based on ensemble clustering provides high perfor-

mance, with purity ranging from 0.84 to 1 for every time series length. Further-

more, the performance are stable, with a monotone decreasing pattern with re-

spect to the time series length.

– The ensemble clustering proves to be stable with respect to the parameters used

to compute the histograms of the metric distributions, which represent the basic

quantitative description of each VM behavior. ****The performance is stable for

a wide range of bin numbers and decreases only when the number of bin is too

low to effectively describe the VM behavior.****

– The achieved purity is independent of the set of metrics considered for clustering,

provided that the set includes the main resources considered in the state of the art,

that are CPU, memory and I/O packets.

– The sensitivity analysis with respect to the number of VMs to cluster shows that

the achieved purity remains stable even when the VM number is increased by a

factor of 10. At the same time, the clustering time has a linear dependence on the

VM number, consistently with the computational cost of the spectral clustering

algorithm.

6 Related Work

The research activities related to the scalability issues in cloud data centers concern

two main topics that are strictly correlated: resource management and infrastructure

monitoring.

Many existing studies propose resource management strategies based on the us-

age of one or few resources compared against thresholds. For example, the studies

in [4] and [16] propose solutions for consolidation of virtual machines based on adap-

tive thresholds regarding the CPU utilization values. Wood et al. [38] propose a reac-

tive, rule-based approach for virtual machine migration that defines threshold levels

regarding the usage of few specific physical server resources, such as CPU-demand,

memory allocation, and network bandwidth usage. Kusic et al. [21] address the is-

sue of virtual machine consolidation through a sequential optimization approach; the

drawback is that the proposed model requires simulation-based learning and the ex-

ecution time grows very fast even with a limited number of nodes. All these studies

perform a per-node analysis based on the usage of one or few resources; however,

these approaches are likely to suffer from scalability issues in large scale distributed

systems, such as IaaS cloud computing data centers.

Few recent studies aim to reduce the dimensionality of the resource management

problem, such as [31], [30], [34]. The studies in [31], [30] exploit a statistical analysis

based on Singular Value Decomposition (SVD) to predict the workload demand ag-

gregated on different virtual machines to anticipate overload conditions on physical

servers and trigger virtual machine migrations. Tan et al. [34] apply Principal Com-

ponent Analysis (PCA) to evaluate resource usage patterns across different nodes.

The proposal consists in placing on the same physical server virtual machines with

negatively correlated resource patterns to reduce the usage variability on the servers.

However, all these studies have a different goal with respect to our paper, because they

address the specific problem of virtual machine consolidation in cloud data centers.

Moreover, all their solutions consider only one resource, that is the CPU utilization

of virtual machines, while we aim to support management strategies that consider

multiple resources, from CPU to network and disks.

***JCOMSS -¿ stabilità dei risultati rispetto a scelta metriche *** In a prelim-

inary work [7,6], we exploit the correlation between the resource usage of virtual

machines to cluster them depending on their resource demand behavior. The method-

ology presented in [7,6] suffers from some drawbacks: the clustering performance

decrease rapidly for short time series of resource usage as well as in presence of pe-

riods of time, even short, where the virtual machines are idle. On the other hand, the

approach proposed in this paper allows us to overcome these issues thanks to the use

of spectral clustering technique [14], [27] and of the distance of Bhattacharyya [10]

as the metric to determine the similarity between virtual machines. The distance of

Bhattacharyya has been widely used in the context of image processing [25], and has

been proposed in the context of characterization of virtual machine behavior in [8].

However, this paper represents a clear step ahead with respect to the previous pro-

posal as we introduce the clustering ensemble, which provides a clear gain for the

stability of the custering performance.

As regards the issue of monitoring large data centers, current solutions typically

exploit frameworks for periodic collection of system status indicators. Solutions such

as Cacti4 and Munin5 are more oriented towards the periodic collection of data. Cacti

is an aggregator of data transferred through the SNMP protocol, while Munin is a

monitoring system based on a proprietary local agent interacting with a central data

collector. Both these solutions are typically oriented to medium to small data cen-

ters because of their centralized architecture that limits the overall scalability of the

data collection process. A more scalable monitoring solution is provided by Ganglia6,

which supports a hierarchical architecture of data aggregators that can improve the

scalability of data collection and monitoring process. As a result, Ganglia is widely

used to monitor large data centers [11], [26], even in cloud infrastructures [36], by

storing the behavior of nodes and virtual machines by organizing the data in time

series. Another solution for scalable monitoring is proposed in [2], where data anal-

ysis based on the map-reduce paradigm is distributed over the levels of a hierarchical

architecture to allow only the most significant information to be processed at the root

nodes. However, all these solutions share the same limitation of considering each

monitored object (being it a VM or a host) independent from the others. This ap-

proach fails to take advantage from the similarities of objects sharing the same behav-

ior. On the other hand, a class-based monitoring system may perform a fine-grained

monitoring for only a subset of objects that are representative of a class, while other

members of the same class can be monitored at a much more coarse-grained level. We

believe that integrating our solution into existing hierarchical models for monitoring

can significantly improve the scalability of monitoring operations.

7 Conclusions

Modern data centers supporting IaaS cloud computing represent a major challenge

for the monitoring and management of resources, mainly due to scalability issues

affecting such large-scale cloud infrastructures.

We propose a methodology for automatically clustering VMs into classes that

share similar behavior in order to improve the scalability of monitoring and man-

agement tasks. The methodology exploits the Bhattacharyya distance to measure the

similarity between the probability distributions of the resources usage and determine

the distance between different VMs. Furthermore, we exploit clustering ensemble

techniques to merge information about multiple VM metrics and improve the stabil-

ity of the clustering performance.

The application of the proposed methodology to a real data center hosting multi-

tier Web applications shows that the accuracy of VMs clustering ranges between

100% and 84% for every considered scenario and can reduce the amount of data

collected by a factor of 15 with respect to a traditional monitoring approach. Fur-

thermore, we demonstrate that the clustering ensemble provides performance that

is almost insensitive to the choice of the number of bins in the histograms used to

4 http://www.cacti.net
5 http://munin-monitoring.org/
6 http://ganglia.sourceforge.net/

compute the Bhattacharyya distance, while alternative clustering approaches based

on such distance may be extremely sensitive to this parameter.

References

1. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A Comparison of Extrinsic Clustering Evaluation

Metrics Based on Formal Constraints. Journal of Information Retrieval 12(4), 461–486 (2009)

2. Andreolini, M., Colajanni, M., Tosi, S.: A software architecture for the analysis of large sets of data

streams in cloud infrastructures. In: Proc. of the 11th IEEE International Conference on Computer

and Information Technology (IEEE CIT 2011). Cyprus (2011)

3. Ardagna, D., Panicucci, B., Trubian, M., Zhang, L.: Energy-Aware Autonomic Resource Allocation

in Multitier Virtualized Environments. IEEE Transactions on Services Computing 5(1), 2 –19 (2012)

4. Beloglazov, A., Buyya, R.: Adaptive Threshold-Based Approach for Energy-Efficient Consolidation

of Virtual Machines in Cloud Data Centers. In: Proc. of (MGC’10). Bangalore, India (2010)

5. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their

probability distributions. Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943)

6. Canali, C., Lancellotti, R.: Automated Clustering of Virtual Machines based on Correlation of Re-

source Usage. Communications Software and Systems 8(4) (2012)

7. Canali, C., Lancellotti, R.: Automated Clustering of VMs for Scalable Cloud Monitoring and Man-

agement. In: Proc. of 20th International Conference on Software, Telecommunications and Computer

Networks (SOFTCOM’12). Split, Croatia (2012)

8. Canali, C., Lancellotti, R.: Automatic clustering of VM based on Bhattacharyya distance. Tech.

Rep. DIEF-10.3-2012, Department of Engineering ”Enzo Ferrari” – University of Modena and Reg-

gio Emilia (2012). Submitted for publication – http://weblab.ing.unimo.it/papers/TR-DIEF-10.3-

2012.pdf

9. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: OSDI, pp. 173–186 (1999)

10. Choi, E., Lee, C.: Feature extraction based on the Bhattacharyya distance. Pattern Recognition 36(8),

1703 – 1709 (2003)

11. Chung, W.C., Chang, R.S.: A new mechanism for resource monitoring in Grid computing. Future

Generation Computer Systems 25(1), 1 – 7 (2009)

12. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Pro-

ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data min-

ing, KDD ’04, pp. 551–556. ACM, New York, NY, USA (2004). DOI 10.1145/1014052.1014118.

URL http://doi.acm.org/10.1145/1014052.1014118

13. Durkee, D.: Why cloud computing will never be free. Queue 8(4), 20:20–20:29 (2010)

14. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for

clustering. Pattern Recognition 41(1), 176 – 190 (2008)

15. Freedman, D., Diaconis, P.: On the histogram as a density estimator:L2 theory. Probability Theory

and Related Fields 57(4), 453–476 (1981)

16. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Resource pool management: Reactive versus proac-

tive or let’s be friends. Computer Networks 53(17) (2009)

17. Gong, Z., Gu, X.: PAC: Pattern-driven Application Consolidation for Efficient Cloud Computing. In:

Proc. of IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecom-

munication Systems (MASCOTS’10). Miami Beach, Florida (2010)

18. Gullo, F., Tagarelli, A., Greco, S.: Diversity-based Weighting Schemes for Clustering Ensembles. In:

Proc. of the 9th SIAM International Conference on Data Mining (SDM’09). Sparks, Nevada, USA

(2009)

19. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651 – 666

(2010)

20. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - An S4 package for kernel methods in

R. Tech. Rep. 9, WU Vienna University of Economics and Business (2004)

21. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and Performance Manage-

ment of Virtualized Computing Environment via Lookahead. Cluster Computing 12(1), 1–15 (2009)

22. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007). DOI

10.1007/s11222-007-9033-z. URL http://dx.doi.org/10.1007/s11222-007-9033-z

23. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge Univer-

sity Press, New York, NY, USA (2008)

24. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware

virtual machine placement. In: Proceedings of the 29th Conference on Information Communications,

INFOCOM’10. San Diego, California, USA (2010)

25. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image Segmentation Using Active Contours Driven by

the Bhattacharyya Gradient Flow. IEEE Transactions on Image Processing 16(11), 2787–2801 (2007)

26. Naeem, A.N., Ramadass, S., Yong, C.: Controlling Scale Sensor Networks Data Quality in the Ganglia

Grid Monitoring Tool. Communication and Computer 7(11), 18–26 (2010)

27. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: ADVANCES

IN NEURAL INFORMATION PROCESSING SYSTEMS, pp. 849–856. MIT Press (2001)

28. Sanguinetti, G., Laidler, J., Lawrence, N.: Automatic determination of the number of clusters using

spectral algorithms. In: Machine Learning for Signal Processing, 2005 IEEE Workshop on, pp. 55

–60 (2005). DOI 10.1109/MLSP.2005.1532874

29. Scott, D.W.: On Optimal and Data-Based Histograms. Biometrika 66(3), 605–610 (1979)

30. Setzer, T., Stage, A.: Decision support for virtual machine reassignments in enterprise data centers.

In: Proc. of IEEE/IFIP Network Operations and Management Symposium Workshops (NOMS’10).

Osaka, Japan (2010)

31. Setzer, T., Stage, A.: Filtering multivariate workload non-conformance in shared IT-infrastructures.

In: Proc. of IFIP/IEEE International Symposium on Integrated Network Management (IM’11).

Dublin, Ireland (2011)

32. Singh, R., Shenoy, P.J., Natu, M., Sadaphal, V.P., Vin, H.M.: Predico: A System for What-if Analysis

in Complex Data Center Applications. In: Proc. of 12th International Middleware Conference. Lisbon,

Portugal (2011)

33. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for combining multiple

partitions. Journal of Machine Learning Research 3, 583–617 (2003)

34. Tan, J., Dube, P., Meng, X., Zhang, L.: Exploiting Resource Usage Patterns for Better Utilization Pre-

diction. In: Proc. of the 31st International Conference on Distributed Computing Systems Workshops

(ICDCSW’11). Minneapolis, USA (2011)

35. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A scalable application placement controller for

enterprise data centers. In: Proceedings of the 16th international conference on World Wide Web,

WWW’07. Banff, Alberta, Canada (2007)

36. Tu, C.Y., Kuo, W.C., Teng, W.H., Wang, Y.T., Shiau, S.: A Power-Aware Cloud Architecture with

Smart Metering. In: Proc. of 39th International Conference on Parallel Processing Workshops

(ICPPW’10). San Diego, CA (2010)

37. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box strategies for virtual

machine migration. In: Proceedings of the 4th USENIX conference on Networked systems design

and implementation, NSDI’07. Cambridge, MA (2007)

38. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box strategies for virtual

machine migration. In: Proc. of the 4th USENIX Conference on Networked systems design and

implementation, NSDI’07. Cambridge, MA (2007)

