

A Location-Allocation model for Fog Computing Infrastructures

Thiago Alves de Queiroz IMT, Federal University of Goiás

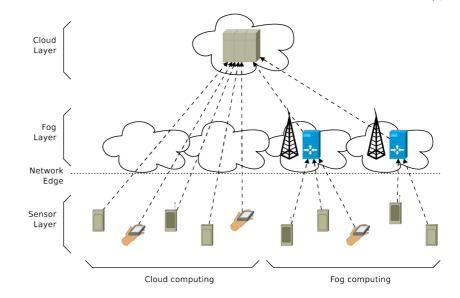
Claudia Canali, <u>Riccardo Lancellotti</u> DIEF, University of Modena and Reggio Emilia

Manuel Iori DISMI, University of Modena and Reggio Emilia

New challenges

- New paradigm: Smart cities large scale sensing applications
- Several fields of application:
 - Urban applications
 - Industrial
 - Automotive
 - Healthcare
 - ...
- New scenarios: Cyber-physical systems
 - Geographically distributed sensors
 - Huge amount of information produced

New challenges



- \rightarrow New requirements for the infrastructure
- Scalability challenge
 - Huge amount of data to transfer and process
 - Geographically distributed systems
 - Example: CPU- and bandwidth-bound applications
- Low latency challenge
 - Support for real time applications
 - Example: latency-bound applications
- Cloud computing is not enough
- (5G alone is not an answer)

Pros and Cons of Fog

- Benefits of Fog computing
- Scalability:
 - Pre-processing offloaded to fog nodes
 - Less strain on Cloud network links
- Latency:
 - Latency-critical tasks offloaded to Fog
 - Fog nodes are closer to the edge

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

- New open issues: → new Fog infrastructure
 - Fog node deployment
 - Sensors-to fog mapping
- Joint problem

Our contribution

- Model for the design of Fog infrastructures
 - Based on location-allocation optimization problem
- Model decisions:
 - How many fog nodes do we need?
 - Which Fog nodes (among a set) turn on?
 - How to map sensors over fog nodes?
- Double optimization goal
 - Reduce infrastructure cost
 - Optimize performance
- Use of SLA constraints

Notation

Model parameters

- \mathcal{S} Set of sensors
- \mathcal{F} Set of fog nodes
- \mathcal{C} Set of cloud data centers
- λ_i Outgoing data rate from sensor *i*
- λ_j Incoming data rate at fog node j
- $1/\mu_j$ Processing time at fog node j
- δ_{ij} Communication latency between sensor *i* and fog *j*
- δ_{jk} Communication latency between fog j and cloud k
- c_j Cost for locating a fog node at position j (or for keeping the fog node turned on)

Model indices

- *i* Index for a sensor
- *j* Index for a fog node
- k Index for a cloud data center

Decision variables

- E_j Location of fog node j
- x_{ij} Allocation of sensor *i* to fog *j*
- y_{jk} Allocation of fog node j to cloud k

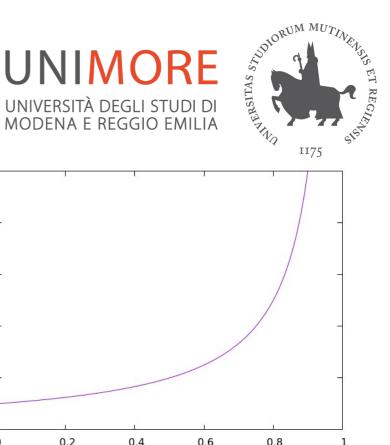
Optimization problem

- Objective function
 - \rightarrow Cost for fog nodes
 - \rightarrow Response time
- Contributions to response time:
 - Sensor → Fog avg net delay
 - Fog \rightarrow Cloud avg net delay
 - Fog processing time
- Caveat: definition of λ_{j}
- Main constraints:
 - Response time < SLA
 - Load on nodes

$$C = \sum_{j \in \mathcal{F}} c_j E_j$$
$$T_R = T_{netSF} + T_{netFC} + T_{proc}$$

$$T_{netsf} = \frac{1}{\sum_{i \in S} \lambda_i} \sum_{i \in S} \sum_{j \in F} \lambda_i x_{i,j} \delta_{i,j}$$

$$T_{netfc} = \frac{1}{\sum_{j \in F} \lambda_j} \sum_{j \in F} \sum_{k \in C} \lambda_j y_{j,k} \delta_{j,k}$$


$$T_{proc} = \frac{1}{\sum_{j \in F} \lambda_j} \sum_{j \in F} \frac{\lambda_j}{\mu_j - \lambda_j}$$

$$(\lambda_j) = \sum_{i \in S} x_{i,j} \cdot \lambda_i$$

$$T_R \leq T_{SLA}$$

$$\lambda_j < E_j \mu_j, \quad \forall j \in F$$

Processing time

10

8

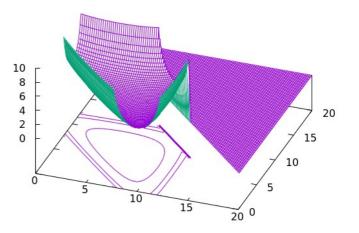
6

4

2

0

0


Tproc

- Based on queuing theory
 - M/G/1 models
 - Consistent with PASTA theorem
- Non linear model
- Response time as a function of system load

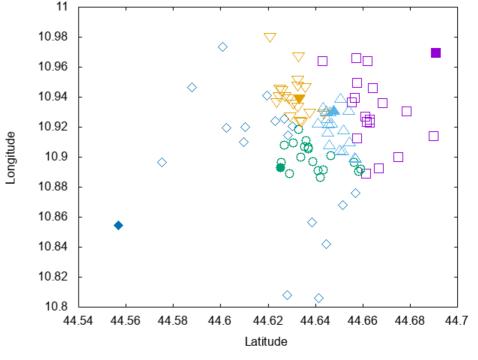
$$T_{proc} = \frac{1}{\mu - \lambda} = \frac{1}{\mu} \cdot \frac{1}{1 - \rho}$$

Processing time

ρ

Scenario definition

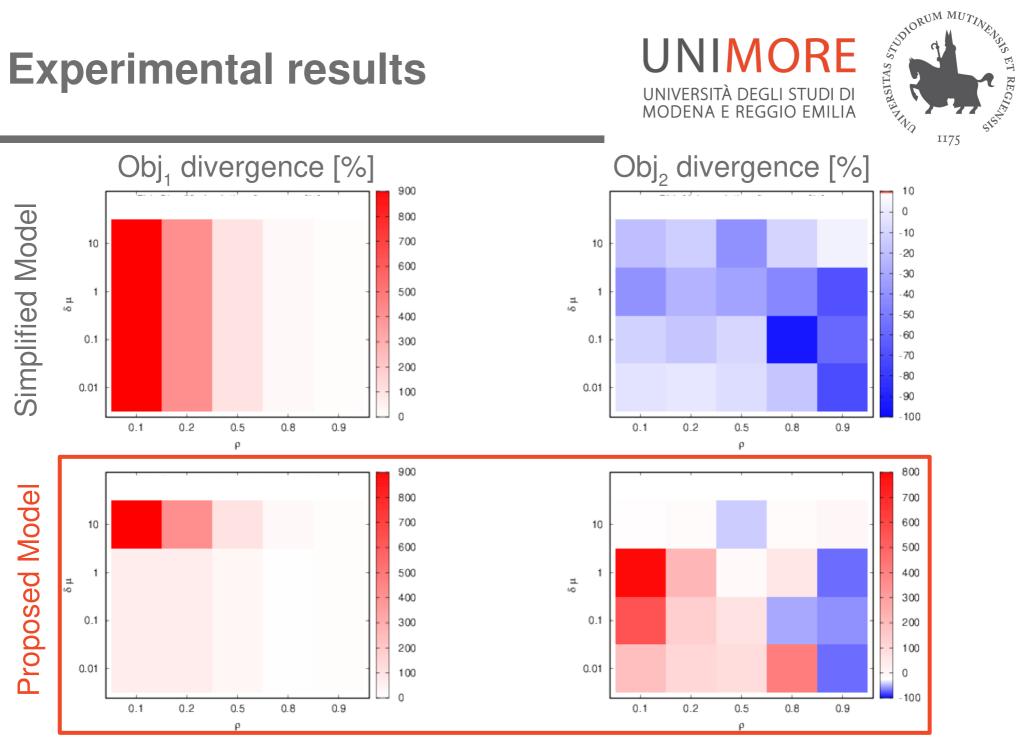
- Parameters to describe scenarios
- Average network delay δ – Typically set to ~10ms
- Network delay / Processing time balance $\delta~\mu$ Scenario CPU bound or Network bound
- System load ρ
 - Average load of fog nodes


$$\begin{split} \delta &= \frac{\sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{F}} \delta_{i,j} + \sum_{j \in \mathcal{F}} \sum_{k \in \mathcal{C}} \delta_{j,k}}{|\mathcal{S}| \cdot |\mathcal{F}| + |\mathcal{F}| \cdot |\mathcal{C}|} \\ \delta \mu &= \delta \cdot \frac{\sum_{j \in \mathcal{F}} \mu_j}{|\mathcal{F}|} \\ \rho &= \frac{\sum_{i \in \mathcal{S}} \lambda_i}{\sum_{j \in \mathcal{F}} \mu_j} \end{split}$$

CLOSER 2020, 7-9 May, 2020

Smart City scenario based on real example

- Italian city (Modena),
- ~180,000 inhabitants
- Traffic monitoring case
 - Sensors on streets
 - Fog nodes in public buildings
 - LoRa connections LoRa
- Evaluation using solver
- Comparison with:
 - Continuous model (no bool)
 - Simplified model (E_i =1)



LocalSolver

(Ideal lower bound, used as baseline comparison)

CLOSER 2020, 7-9 May, 2020

Conclusions

- Challenges of Fog computing
 - Selection of fog nodes and mapping of sensors
- Contribution: proposal of a model
 - Based on location-allocation optimization problem
 - Dual objective function
 - Non linear problem
- Validation of the model
 - Focus on a realistic scenario
 - Wide range of parameters considered
- Open issues
 - Heuristics (GA, Variable Neighborhood Search)
 - Dynamic scenarios