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Abstract The success of the cloud computing paradigm is leading to a significant
growth in size and complexity of cloud data centers. This growth exacerbates the
scalability issues of the Virtual Machines (VMs) placement problem, that assigns
VMs to the physical nodes of the infrastructure. This task can be modelled as a multi-
dimensional bin-packing problem, with the goal to minimize the number of physical
servers (for economic and environmental reasons), while ensuring that each VM can
access the resources required in the next future. Unfortunately, the naı̈ve bin packing
problem applied to a real data center is not solvable in a reasonable time because the
high number of VMs and of physical nodes makes the problem computationally un-
manageable. Existing solutions improve scalability at the expense of solution quality,
resulting in higher costs and heavier environmental footprint. The Class-Based place-
ment technique (CBP) is a novel approach that exploits existing solutions to automat-
ically group VMs showing similar behaviour. The Class-Based technique solves a
placement problem that considers only some representative VMs for each class, and
that can be replicated as a building block to solve the global VMs placement prob-
lem. Using real traces, we analyse our proposal performance, comparing different
alternatives to automatically determine the number of building blocks. Furthermore,
we compare our proposal against the existing alternatives and evaluate the results for
different workload compositions. We demonstrate that the CBP proposal outperforms
existing solutions in terms of scalability and VM placement quality.

1 Introduction

The success of cloud computing is clearly testified by the expected growth in fifteen
years by two order of magnitude in terms of data stored and processed in cloud sys-
tems [1]. The reason behind this success is the on-demand, pay-as-you-go philosophy
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used by cloud computing providers to provide computational, storage and network-
ing resources for their customers. The offered flexibility is ideal to face the highly
variable workloads of novel services while reducing the costs associated to the man-
agement of the ICT infrastructure. This success is determining a trend towards the
deployment of larger and even more powerful cloud data centers, hosting an always
increasing number of Virtual Machines (VMs). However, as data centers grow in size
and complexity, new challenges arise for automated processes of system monitoring
and management. In this paper we explicitly focus on the management problem of
VMs placement, that is responsible for allocating each VM to a physical node of the
infrastructure with the aim to minimize the data center energy consumption to reduce
costs and environmental footprint [2,3]. The typical placement problem formulation
is that of a multi-dimensional bin packing: the optimization goal is to minimize the
number of physical nodes required to host the VMs, while the problem constraints
captures the time-varying requirements of multiple resources (e.g., CPU, memory,
network traffic) for each VM at different future time intervals [4,5]. The nature of the
multi-dimensional bin-packing problem is NP-hard: hence, as the number of VMs
grows, it is not possible to reach an optimal solution in a reasonable time. Existing
solutions typically address the scalability issues of the bin-packing problem introduc-
ing strong simplifications and adopting heuristics to reduce problem dimensionality
and computational costs.

A widely adopted solution to reduce the dimensionality of the VMs placement
problem is to consider the nominal requirements of the VMs [6–8]. If the VMs size
is a sub-multiple of the physical node capacity, the VMs placement becomes a linear
problem that is easily solvable in a short time. Furthermore, we do not need to con-
sider the evolution over time of the actual VMs resource requirements, adding a fur-
ther simplification to the placement problem. The main drawback of this approach is
the overestimation of the actual resource requirements of the VMs, whose utilization
is typically below 100% [9]. This leads to an inefficient use of the cloud data center,
with a higher than needed number of physical nodes used for the overall infrastruc-
ture. A second solution to reduce the VMs placement dimensionality is to limit the
number of resources that are considered in the bin packing problem and/or the num-
ber of time intervals considered as constraints of the optimization problem [10,5]:
for example, in many cases just the peak CPU usage over a whole day (24 hours)
is taken into account. However, this solution fails to take advantage from workload
complementary patterns (e.g., co-presence of applications with diurnal and nocturnal
peak utilization), and tends to result in sub-optimal solutions. Furthermore, even with
these simplifications the computational cost for solving the VM placement problem
remains high, especially for large data centers, to the extent that the time to obtain
a feasible solution may be not acceptable for the dynamic management of the in-
frastructure. Heuristics can be exploited to reduce the computational demand of the
VM placement problem [11,12], but these solutions are feasible only when jointly
used with dimensionality reduction, thus hindering the use of multiple time intervals
with a negative effect on the solution quality. We can summarize that state of the art
approaches for the VMs placement problem typically fail to consider the actual be-
havior of VMs and/or rely on simple heuristics, producing in both cases low quality
solutions that lead to a waste of cloud data center resources.



In this paper we propose a novel approach for VMs placement, namely Class-
Based Placement (CBP), that exploits the presence of classes of VMs with a similar
behavior in terms of resource usage within the cloud data center. Information about
behavior similarity can be either inferred from a PaaS vision of the cloud infrastruc-
ture that knows the applications running on the VMs or can be obtained applying
recent methodologies to cluster together similar VMs [13–15] in cloud systems. Our
technique shifts the point of view from a single bin-packing problem, that considers
the whole data center, to a much smaller problem, limited to a few representative
VMs for each class, that can be replicated as a building block to create the solution
for the global VM placement problem. The small size of the building-block problem
can be solved in short time even taking into account an amount of data and constraints
that would not be possible to consider in the global bin-packing problem. Our anal-
ysis specifically addresses the issue of automatically determining which is the most
suitable size of the building block problem, proposing and comparing two different
alternatives to split the global problem. Our claim is that the CBP proposal can effec-
tively reduce the scalability issues of the VMs placement by reducing the size of the
problem. Moreover, higher quality placement solutions can be achieved compared
to existing alternatives since the better scalability allows to take into account a more
complex model of the VM resource demand. A first version of this technique was pro-
posed in [16]. However, this paper represents a significant step ahead with respect to
that previous study for a twofold reason: first, it addresses the open issue of automati-
cally identifying the best number of building blocks to use to split the global problem;
second, it presents a wider range of experiments, including a sensitivity analysis of
the technique performance with respect to different workload compositions.

A thorough experimental evaluation based on traces from a real data center ana-
lyzes the performance of our proposal in terms of scalability and quality of placement
solution: in other words, we evaluate the capability of the CBP placement to solve
large problems and to minimize the number of used physical nodes. We compare
our proposal with state of the art models for VMs placement [4]. Our experiments
achieve the following main results: (1) we evaluate the pros and cons of different ap-
proaches to select the number and size of building blocks, and we identify the best
option; (2) we show the scalability problems of existing solutions for VMs placement
in cloud data centers; (3) we demonstrate that our proposal outperforms existing tech-
niques from both the points of view of resolution time and quality of the solution; (4)
we show that our proposal can effectively leverage the presence of complementary
workload patterns.

The remainder of this paper is organized as follows. Section 2 describes the ref-
erence scenario for our proposal, while Section 3 describes our model for solving the
VM placement problem. Section 4 describes the results of the methodology evalua-
tion. Finally, Section 5 discusses the related work and Section 6 concludes the paper
with some final remarks.



2 Management of IaaS Cloud Data Centers

We now describe the reference scenario, that is used to outline the characteristics of
the proposed technique for the management of a cloud data center. In particular, we
focus on the operations that decide the placement of the VMs over the physical nodes
of the infrastructure, depicted in Figure 1.
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Fig. 1: VMs placement in a IaaS data center

In our proposal we make the following two assumptions:

– VMs placement is a periodic task that aims at mapping VMs over the physical
nodes of the infrastructure with the goal of minimizing the number of used nodes,
while satisfying the requirements of each VM in terms of resource usage:

– we can group VMs into classes with similar behavior; VMs belonging to the same
class exhibit similar resource requirements.

The second condition typically occurs when a customer application is replicated
over a distributed architecture for scalability and availability reasons: in this case, a
dispatcher distributes the requests among the VMs running the same software compo-
nent of a same customer application, with the goal of balancing the application load.
The dispatcher action ensures that the VMs of same class exhibit a similar behavior
in terms of resource requirements [17]. If the balancing dispatcher is provided by the
cloud platform (e.g., the Elastic load balancing mechanism1) the cloud provider has
already an information of which VMs belongs to the same customer application. In
the case of a pure IaaS provider, where the load balancing is configured by the cloud
customer, we can rely on methodologies to automatically cluster VMs with similar
behavior in terms of resource usage without having any knowledge of the software
component they run. To this purpose, methodologies based on statistical analysis,
like Principal Component Analysis (PCA) and histogram-based distance, have been

1 https://aws.amazon.com/elasticloadbalancing/



recently proposed in literature [13–15]. The proposal in [15] is especially suited for
this task because it can achieve a VMs classification with an accuracy close to 100%
(that is, nearly error free).

Figure 1 illustrates the periodic VMs placement in a cloud data center that adopts
the proposed approach. Multiple VMs are grouped into classes (top part of the Fig-
ure), with VMs of the same class exhibiting similar resource demands. The VM re-
source usage is constantly monitored, and the monitoring process may take advantage
of the knowledge of VM classes to reduce the amount of data collected and improve
scalability, as discussed in [13,14]. The output of the monitoring process is repre-
sented as the data objects marked as “P1...c”, grouped by class. the samples from the
monitoring are fed into a Prediction step. This task can be implemented according to
multiple techniques, ranging from the simplest solutions assuming that resource de-
mands follow a periodical cycle with a length of 24 hours [18], to complex predictive
techniques that can cope with trends, periodic behaviors and state changes [19]. The
output of the prediction is an estimation of the resource usage in the future for each
class of VMs (data marked with “F1...c”).

The future demands and the description of the infrastructure of the data center
(marked with the letter “I”) are the input of the Consolidation model, that is the core
of our proposal. The consolidation model is based on the bin-packing problem and
its output is a solution of such problem that contains the decision (marked with letter
“D” in Figure 1) on the mapping between VMs and physical nodes. The placement
decision is then applied to the VMs by powering on and off the physical nodes of the
cloud infrastructure.

It is worth to note that inaccurate prediction of future resource usages as well as
incorrect VMs classification could lead to flawed placement solutions possibly suffer-
ing from overload or underload conditions on some physical nodes of the infrastruc-
ture. To cope with such condition, dynamic strategies exploiting live VMs migration
can be integrated in the system. For example, the solution proposed in [20] of a dis-
tributed mechanism based on local information to take decisions on VMs migrations
can be easily applied to the depicted cloud data center.

3 Consolidation Models for VM placement

We now discuss the consolidation model, which represents the core of the VMs place-
ment technique. In particular, we start with a description of the existing consolidation
models [4,5] and we discuss the most widely adopted simplifications used to improve
the scalability of this task. Next, we present the Class-based placement consolidation
model. Finally, we discuss the critical parameters that may affect the model perfor-
mance of the CBP model.

3.1 Multi-Dimensional Bin Packing model

The consolidation model used for VMs placement is typically based on a multi-
dimensional bin packing problem, where one or more VM resources are considered



for consolidation during the next planning period, and the planning period is divided
into a set of time intervals T. The multi-dimensional bin-packing model is shown in
Figure 2. The model input is the prediction of future requirements for every VM in
multiple time intervals (the data with the letter “F”). In this case we do not divide
the future requirements by class as in Figure 1 because this consolidation model is
not class-aware. An additional input of the consolidation model is a description of
the data center infrastructure with the available physical nodes and their capacity (the
data with the letter “I”). A single bin-packing problem is solved for the whole data
center providing the placement of VMs over the nodes of the data center (the out-
put is represented as the data with the letter “D”). The problem can be formalized as
follows.
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Fig. 2: Consolidation model with global multi-dimensional bin-packing

Let us consider a set M of VMs that have to be deployed on a set N of physical
nodes. The matrix R represents the resource requirements of the VMs over multiple
observation time intervals. Although the most general version of the problem involves
multiple resources of the VMs, such as CPU, memory, network, and disk [4,21,22],
we limit our model to a single resource, the CPU utilization, which is typically a
bottleneck resource in Web applications [23] and is often the only considered metric
for cloud capacity allocation [4,24]. However, it is worth to note that an extension
of our model to include multiple resources (e.g., memory which is the second most
common resource considered for VMs placement) is straightforward. Furthermore,
the idea of a block-based solution can be extended to several existing multi-resource
VMs placement problem formulations, such as the one described in [25]. In our model
Rm,t represents the CPU requirement of VM m (m∈M) for the time interval t (t ∈T).
Furthermore, for each node, V models the available capacity on the node: Vn repre-
sents the available CPU capacity on node n (n ∈ N). We can define the optimization
problem as follows:

min ∑
n∈N

On (1)



subject to:

∑
n∈N

In,m = 1 ∀m ∈M (2)

∑
m∈M

Rm,t · In,m ≤Vn ·On ∀n ∈ N,∀t ∈ T (3)

In,m = {0,1} ∀n ∈ N,∀m ∈M (4)
On = {0,1} ∀n ∈ N (5)

Where On is a binary decision variable that discriminates if a physical node n in
the data center is on or off, In,m is a binary decision variable that decides if VM m is
allocated on node n. Expression 1 is the objective function of the optimization prob-
lem that aims to minimize the number of used nodes. Due to the set of constraints 2,
every VM is allocated exactly on one physical node. The set of constraints 3 expresses
the bound that on each node the allocated VMs must not exceed the overall capacity
of the node for every considered time interval. Finally, the sets of constraints 4 and 5
model the boolean nature of the decision variables.

When solving bin packing problems, the number of dimensions (in this case the
number of time intervals |T| considered in our problem formulation) has major im-
pact on the time to reach a solution. To improve the scalability of VMs placement
problem, a common approach is to reduce the cardinality of constraints 3 in the
problem formulation. To this aim, we introduce a different set of time intervals T′
such that |T′| < |T| and we bind each new interval t ′ ∈ T′ to a set of time inter-
vals {t1, . . . , tk} ∈ T. The new constraint formulation will consider for each VM m
a requirement Rm,t ′ = max(Rm,t1 , . . .Rm,tk). In the extreme case, when the number of
time intervals is reduced to one, the multi-dimensional bin packing reverts to a one-
dimensional bin packing problem. In this case, we can exploit heuristics such as the
First Fit Decreasing (FFD) algorithm to reach an approximate solution of the problem
in a very short time [12]. However, the reduction of dimensionality typically leads to
suboptimal solutions for the VM placement problem.

3.2 Class-Based Consolidation Model

Class-based consolidation exploits the presence of classes of VMs exhibiting similar
resource usage. We recall that even if the cloud provider has no direct knowledge of
clusters of VMs that host the same software component of the same application, this
information can be obtained by the cloud provider by exploiting recently proposed
techniques that group together VMs with similar behavior [13–15]. The global bin
packing problem, taking into account the whole data center, is reduced to a much
smaller problem that takes into account only a few VMs for each class. The reduced
size of the problem allows us to solve the multi-dimensional consolidation model
with a number of time intervals that would not be possible to consider for the global
problem in Section 3.1. The solution of the smaller problem is then replicated as a
building block to determine the solution for the global VM placement problem.



Figure 3 shows the Class-based placement. The input consists in the description
of the infrastructure (labeled as “I”) and of the future VMs requirements, but in this
case we assume that the VMs are divided into a set C of classes, where all the VMs
of a same class present similar resource requirements (data on resource requirements
are labeled “F1...c” representing the different classes). The basic idea is to divide the
global set of VMs in a number b of B-blocks all composed by the same number of
VMs for each class (b is computed by a module of the consolidation model), and one
E-block containing the rest of the VMs. These blocks of reduced size are exploited
to determine the global solution to the VMs placement problem, as formalized in the
rest of this section.
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Fig. 3: Class-based consolidation model

For each class c ∈ C, we define a set of VMs Mc belonging to class c such that:

⋃
c∈C

Mc = M

Mc1 ∩Mc2 = /0 ∀c1,c2 ∈ C

We recall that VMs belonging to the same class run the same software component
of an application, so we can assume that they are characterized by similar resource
demand. Hence, we can define their resource demand as:

Rm,t = Rc,t ∀c ∈ C,∀m ∈Mc,∀t ∈ T (6)

The global set of VMs is divided in b B-blocks composed by the same number
of VMs for each class. For each class c ∈ C, each B-block contains a set Bc ⊂Mc of
VMs belonging to class c. The remaining set of VMs Ec, that are not assigned to any
B-block, is assigned to the E-block. Given the number of B-blocks b, the cardinality
of each set is:



|Bc|=
⌊
|Mc|

b

⌋
∀c ∈ C (7)

|Ec|= |Mc|%b ∀c ∈ C (8)

Since all the VMs of a same class exhibit similar resource requirements, the place-
ment solution computed for a single B-block can be replicated on all the remaining
B-blocks. The B-block sub-problems is an optimization problem similar to the one in
Section 3.1, but applied to the subset of VMs

⋃
c∈C Bc. Considering the presence of

VMs classes (Equation 6), we can express the constraint 3 as:

∑
c∈C

∑
m∈Bc

Rc,t · In,m ≤Vn ·On ∀n ∈ N,∀t ∈ T

A similar set of constraints applies to the E-block problem.
It is worth to note that, once the B-block problem has been solved, one node

for each block may result to be under-utilized. A possible extension of the proposed
consolidation model is to include an additional consolidation round including only
these nodes. However, in this study, we prefer to discard such a potential improvement
focusing more on the scalability gain of the basic Class-based consolidation and on
the problem of selecting the size of the B-blocks, even at the cost of being slightly
unfair in the evaluation of our own proposal.

To summarize, the global placement solution can be obtained through the fol-
lowing steps: 1) solving the placement problem for one B-block and replicate the
solution for all the B-blocks; 2) solving the placement problem for the E-block. The
reduced size of these blocks allows us to solve in a reasonable amount of time the
corresponding placement problems taking into account a multi-dimensional formu-
lation with multiple time constraints. This approach offers high quality solutions for
the global placement problem that can take advantage of complementary workload
patterns to minimize the number of required physical nodes.

3.3 Block number estimation

We now focus on how VMs are assigned to the B-blocks and to the E-block. The
parameter b determines this assignment, hence the selection of the best number of
B-blocks is a critical factor for the performance of the proposed CBP technique. The
choice of the b value is carried out by the Block number estimation component in
Figure 3.

The impact of b over the consolidation process is twofold. On one hand, as b is re-
duced, the size of the problems in the B-blocks increases. This may have a detrimental
effect on the resolvability of the VMs placement problem due to the computational
cost of the large optimization problems for the B-blocks. On the other hand, as b
grows, we tend to have very small problems, where the amount of unused resources
of the nodes in each B-block tends to become relevant. In this case we observe a frag-
mentation effect that may reduce the quality of the solution (the number of physical



nodes used is much higher than the optimum). The identification of the best value of
b must solve a trade-off between computational cost and solution quality, ensuring
that the splitting of the VMs placement problem is feasible.

We consider and compare two different approaches to automatically compute a
suitable value of b. The first approach is a slightly refined version of what has been
first proposed by the authors in [16], while the second option is a novel proposal.

The first approach is mostly focused on scalability issues and aims to create as
much B-blocks as possible. We define L as the cardinality of the smaller class in the
system, that is L = min({|Mc|,∀c ∈ C}). If we choose b = L as in [16], we have
as much B-blocks as possible, with the guarantee that at least a representative for
each class of VMs is included in the B-block. However, the remaining E-block may
be much bigger than the B-block, and we may still encounter scalability problems.
Hence, we refine this approach by computing a value b† for b using an iterative ap-
proach. We start with the maximum value possible of b = L and we compute the
values of |Bc| and |Ec|. Referring to the problem in Section 3.2, we recall that Equa-
tions 7 and 8 define the number of VMs of a generic class c into a B-block and
E-block, respectively. We then evaluate the following constraint:

|Bc| ≥ 1 ∀c ∈ C (9)

∑
c∈C
|Bc| ≥ ∑

c∈C
|Ec| (10)

Constraint 9 requires the B-block to contain at least a VM for each class, while
constraint 10 is motivated by the need to avoid a block splitting where the B-block
remains small and the E-block becomes a huge and intractable problem. If the con-
straints are satisfied, we return the found value of b as b†. Otherwise, we decrease b
and we re-iterate the process. It is intuitive that this approach may increase the risk of
sub-optimal global VM placement due to the sub-utilization of at least one physical
node for each B-block. However, the small problem size should increase the possi-
bility to solve the B-block and E-blocks problems to optimality (without the need to
rely on over-simplified heuristics).

The second approach to determine b tries to use large B-blocks as long as this
does not determine scalability issues. Also in this case we compute b∗ (the value of b
identified by the second approach) through an iterative approach trying to distribute
VMs between B-blocks and E-block until a set of constraints is satisfied. Besides the
constraints previously defined as 10 and 9, we consider also:

∑
c∈C
|Bc| ≤ S (11)

Constraint 11 places a maximum size on the VMs in a B-block; the presence of
this bound is important because in a previous study [16] we demonstrate that, as the
problem size grows, the bin-packing problem becomes unmanageable and cannot be
solved. We do not need to place a bound for the maximum size of the E-block because
it automatically derives from constraint 10.



The iterative approach starts with an initial value of b =
⌈ |M|

S

⌉
. This value derives

from constraint 11: a lower value of b would automatically violate this condition. If
all the constraints are satisfied, we have an acceptable block splitting and we return
the found value as b∗. Otherwise, we increment b and we re-evaluate the constraints
until we find b∗. The maximum possible value for b is L: any higher value of b would
violate the inequality in constraint 9.

4 Experimental results

In this section we present the results of the experimental evaluation of the proposed
CBP placement technique. For our evaluation, we consider the quality of the solution
and the corresponding resolution time. In the rest of this section we describe the
experimental setup and present the results of different experiments aimed at: tuning
the S parameter that indicates the B-block maximum size; evaluating the impact of
the b parameter to identify the best approach to compute the number of B-blocks;
comparing the CBP proposal with MBP consolidation models in terms of scalability
and solution quality; evaluating the CBP placement performance for workloads with
a different composition in term of complementary patterns.

4.1 Testbed description

We obtained an extensive dataset from a private cloud data center. The set contains
up to 1200 VMs traces for the resource usage of Web/application/database servers
and ERP applications, where the VMs belongs to 44 different classes, with each class
containing from 10 to 50 VMs. For our experiments we consider only the CPU re-
source, as described in the problem formalization of Section 3.1. The CPU traces are
the input for the consolidation model in the VM placement problem; the resource
usage is measured in intervals of 5 minutes, as in other experiments in literature [26].
We also consider workloads with a different percentage of complementary patterns,
ranging from 10% to 90%, to evaluate the sensitivity of the CBP placement perfor-
mance to the workload composition; when not differently specified, the workload
contains a 40% of complementary patterns, that is consistent with cloud workloads
considered in other studies [22]. We consider two workloads, described as two time
series of CPU requirements Ri,t ,R j,t , i, j ∈ [1,C] to be complementary if their sum is
roughly 100% throughout the whole considered period. In a more formal way, we can
write this condition as |Ri,t +R j,t −100%| ≤ ε,∀t ∈ T, where ε is a tolerance that in
our experiment we set to 15%.

For the experimental evaluation, we consider multiple scenarios characterized by
different numbers of VMs to be placed on the physical nodes of the virtualized data
center. In particular, we consider a VMs set size ranging from 150 to 1200 VMs. For
each VM, the CPU utilization is in the range [0%-100%] with an average value of
54%. For each physical node the CPU capacity is 800%, meaning that each node can
host 8 VMs with CPU utilization of 100%. For each scenario, we compare different
consolidation models operating over a planning period of 24 hours. The proposed



Class-Based Placement (CBP) is solved with 288 five-minutes time intervals. For the
Multiple Bin Packing (MBP) model, we consider multiple setups with a different
dimensionality of the problem (in terms of number of time constraints). The consid-
ered numbers of dimensions for the MBP model are 288 (five-minutes intervals), 24
(1 hour), 2 (12 hours) and a single time interval (24 hours). We have also implemented
a First Fit Decreasing (FFD) heuristic [12], that we used as a term of comparison to
evaluate the placement solution quality. The FFD heuristic does not allow to consider
time constraints, hence it is evaluated with one time interval of 24 hours. All the ex-
periments are run on 2.4 GHz, 16 cores Intel Xeon with 16 GB RAM, using IBM
ILOG CPLEX 12.6 as the optimizer solver2.

As a metric for the VMs placement solution quality, we consider the number of
physical nodes that are required for the allocation. The number of nodes for each
solution is expressed with respect to an estimation of the optimal solution for the
considered scenario. This metric is similar to the competitive ratio [27] used for the
on-line bin packing algorithms and measures the overhead of the proposed solution
against the optimum. Lower values (as close as possible to 100%) means higher qual-
ity solutions. The MBP model with five minute time interval (MBP-5min) represents
a lower bound for all the feasible allocations, as this consolidation model exploits
all the available information to find an optimal solution. However, the number of
variables and constraints for this model increases rapidly with the VMs set size, pro-
ducing an optimization problem instances whose computation takes extremely long
times or does not produce any feasible solution due to the huge main memory require-
ments, that may finally cause the solver to abort the optimization processing. For this
reason, we will use the objective function value of the LP relaxation of the MBP-
5min consolidation model (in Section 3.1) as a lower bound for the optimal number
of physical nodes to use. In other words, we relax the boolean nature of the decision
variables, assuming that parts of a VM can be assigned to different physical nodes. In
the formulation this corresponds to simply removing the constraint 4. This allocation
is obviously not feasible from a technical point of view but can be easily computed,
hence we exploit it as a convenient lower bound for any feasible allocation [4].

It is worth to note that for many problems, starting from a medium size (i.e.
starting from 250 VMs), the resolution of the MPB consolidation models may take
long times, such as hours or days, even for a limited number of time intervals. For
that reason, we use a time limit of 30 minutes (1800 seconds) for each problem, and
consider the best integer solution found as the solution of the placement problem, as
commonly done in similar research studies [4,28].

4.2 B-block Maximum Size Tuning

This first analysis aims to identify the value of the threshold S that determines the
maximum size for the B-block in constraint 11. Basically, we aim to identify the
maximum size of the bin packing problem that can be solved to optimality with five
minute time intervals within the considered time limit. To this aim, we apply the

2 www.ibm.com/software/commerce/optimization/cplex-optimizer/



MBP-5min model to scenarios with a VMs set size ranging from 150 to 400 VMs
and measure the corresponding resolution times.

Table 1: Resolution times for MBP-5min consolidation model

VMs Set Size Resolution time (s)
150 233.09
200 270.59
250 1800 (L)
300 1800 (L)
350 No integer solution
400 No integer solution

The results in Table 1 show that, as the number of considered VMs grows from
150 to 200, the time to reach the optimal solution increases of about 16%. When the
number of VMs further grows, the solver is no longer able to find an optimal solution
due to the time limitation. For scenarios with 250 and 300 VMs, the solver can reach
a non optimal but feasible integer solution within the time limit, while for higher
VMs set size no integer solution is found. This preliminary analysis provides us with
the value for the threshold S used to automatically compute the number of B-blocks
b∗: in our experiments we consider S = 300 as the size of the largest B-block that can
be solved within the time limit.

It is worth to note that the choice of the value for the threshold S has an important
consequence: the scenarios with a number of VMs lower than 300 are resolved with
just one B-block that includes all the VMs of the system. In this case, the CBP-
5min consolidation model is equivalent to the MBP-5min solution. For this reason, in
the rest of the paper we only consider scenarios with a number of VMs greater than
300, since only in these medium-large scenarios the difference between proposed and
existing placement techniques can be appreciated.

4.3 Impact of b parameter

We now aim to evaluate the impact of the b parameter, which represents the number of
B-blocks, on the performance of the Class-based placement technique. Our goal is to
identify which approach provides better results between the two possible alternatives
to compute b outlined in Section 3.3.

For all the scenarios with a VM set size ranging from 400 to 1200, the first experi-
ment compares the solution quality achieved for the values of b computed accordingly
to the two approaches, b† and b∗. Table 2 shows the solution qualities achieved for
each VM set size.

The results clearly show that the proposed algorithm for the determination of b∗

allows to obtain significant improvements in the solution quality achieved by the CBP
model for every considered scenario: the quality of the solutions for b = b∗ (second
column) ranges from 103.2% to 107.7%, while for b = b† (third column) the quality
ranges from 106.8% to 115.9%. This result is motivated by the lower number of



Table 2: Solution quality for CBP-5min model [%]

VMs Set Number of B-blocks (b)
Size b = b∗ b = b†

400 103.2 (b = 2) 112.9 (b = 8)
500 104.5 (b = 2) 115.9 (b = 8)
600 105.5 (b = 2) 111.1 (b = 8)
700 106.6 (b = 3) 110.3 (b = 8)
800 107.0 (b = 3) 114.1 (b = 10)
900 105.1 (b = 3) 108.8 (b = 8)
1000 104.5 (b = 3) 106.8 (b = 10)
1100 107.7 (b = 4) 114.3 (b = 10)
1200 105.5 (b = 4) 113.8 (b = 10)

B-blocks determined by the approach proposed in this paper: while the value of b†

ranges from 8 to 10, for the same scenarios the values of b∗ go from 2 to 4. The high
number of B-blocks corresponding to the b† values increase the risk of wasting of
resources due to the sub-utilization of at least one physical node for each B-block.
On the other hand, the small number of b∗ B-blocks favors high quality solutions for
VMs placement.

In the second experiment, for each VMs set size we force the b parameter to range
from 2 to the maximum allowed value L, which is the cardinality of the smallest VMs
class. For each value of b, we evaluate the number of VMs in B-blocks and E-blocks,
and the quality of the solution in terms of VMs placement. We achieve similar results
across all the scenarios: for space reasons we do not show all the results, but we
discuss the cases of 1100 and 800 VMs as significant examples of large size scenarios.

Figures 4(a) and 4(b) show the results as b ranges from 2 to 10 (L) for the scenario
with 1100 and 800 VMs, respectively. The graphs also show the line corresponding
to the threshold S = 300, that we use to define the optimal value of b∗.
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Fig. 4: Block size and solution quality for varying numbers of B-blocks

As expected, in both graphs the number of VMs in the B-blocks decreases as b
increases. If we observe the values of the solution quality as b grows, we note that



both graphs show very clearly the trade-off between resolvability and quality related
to the choice of the number of B-blocks. For example, Figure 4(a) shows that for b
equal to 2 and 3 the solver is not able to reach a feasible integer solution within the 30
minutes limit (solution quality = N/A) because of a too high number of VMs in the
B-block. This confirms our assumption that the problem with more than 300 VMs
in a block is hardly solvable with constraints of 5-minutes time intervals. We also
observe that the best solution is achieved for b = 4, that corresponds to the value of
b∗ identified by the algorithm proposed in this paper (Section 3.3): for higher values
of b, the number of required physical nodes slightly grows, leading to a degradation
of the solution quality. We recall that the solution quality is measured as the number
of physical nodes required for the allocation with respect to the objective function
value of the LP relaxation of MBP (5-min); in other words, a solution quality of
110% means that the allocation required 10% physical nodes more with respect to the
solution of the LP relaxation problem. The latter result confirms that increasing the
number of B-blocks is likely to cause the risk of sub-optimal global VM placement
due to the waste of resources in at least one physical node of each B-block.

Similar observations are valid for Figure 4(b), that represents the scenario with
800 VMs. It is important to note that also for this scenario, as for all the VMs set
sizes not reported here, the value b∗ corresponds to the number of B-blocks the leads
to the best quality solution for the VM placement problem. This experiment confirms
that the approach proposed in this paper to automatically determine the number of
B-blocks is effective in addressing the trade-off between resolvability and solution
quality.

4.4 Scalability analysis

In this experiment we compare different consolidation models to evaluate if they can
reach an optimal or feasible solution within the expected time limit of 30 minutes.
Table 3 shows for which scenarios it was possible to solve the problem instances to
optimality (S), reach an integer solution even if not optimal (L), or not even find any
feasible integer solution (N) within the time limit. We evidence the cells related to
unsolvable problem instances with a gray background. For the CBP technique we
consider both the approaches to compute the number of B-blocks: b∗ and b† (second
and third column of the table, respectively). Moreover, we report two values separated
by a slash symbol: the first refers to the resolution of the B-block and the second to
the E-block.

We observe that, for MBP models considering short time intervals of 5 minutes
and 1 hour, it is not possible to find a feasible integer solution within the time limit
starting from medium sized problems of 400 and 600 VMs, respectively; for larger
time of 12 hours and 1 day, the size of resolvable problems grows to 1000 and 1100,
respectively. On the other hand, the breakdown in building blocks allows the CBP
model to find a feasible integer solution for every VMs set size, with the possibility
to solve to optimality even scenarios up to 600 VMs. The results confirm that the
CBP technique allows us to solve significantly larger problems with respect to a MBP
approach, even when the MBP problem considers few or just one time intervals. If



Table 3: Scalability evaluation of MBP/CBP consolidation models

Consolidation Models
VMs Set CBP CBP MBP MBP MBP MBP

Size (b∗) (b†) 1d 12h 1h 5min
400 S/S S/S L L L N
500 S/S S/S L L L N
600 S/S S/S L L N N
700 L/S S/S L L N N
800 L/S S/S L L N N
900 L/S L/S L L N N

1000 L/S L/S L L N N
1100 L/L L/S L N N N
1200 L/L L/S N N N N

we observe the second and third columns of the table, we note that the choice of the
number of B-blocks of the CBP model can affect the scalability of the placement. For
b equal to b∗ the number of B-blocks tends to be low, thus generating blocks with a
higher number of VMs with respect to the case of b†. Indeed, the solution with b∗ can
not solve to optimality scenarios with more than 600 VMs. However, it is important
to note that the solver can always reach a feasible integer solution even for the larger
scenarios; this is due to the threshold imposed on the maximum size of the B-block.

4.5 Solution quality comparison

Let us now evaluate the quality of the solutions achieved by the CBP proposal with
respect to the MBP consolidation model for the different scenarios. Fig. 5 shows the
solution qualities of the consolidation models for VM set sizes ranging from 400 to
1200. The CBP model considered for this experiment exploits a number of B-blocks
equal to b∗. This graph does not report the results for the MBP-5min model, because
it cannot find any feasible solution for instances larger than 300 VMs, as discussed in
Section 4.2.
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The graph clearly shows how the increase in the number of VMs causes the im-
possibility to find a feasible integer solution within the time limit for the MBP mod-
els: we see the histogram bars referred to MBP models gradually disappearing as the
number of VMs increases. For 1200 VMs, only the FFD heuristic and the proposed
CBP model are able to find a feasible solution within 30 minutes. From the graph
is also evident how MBP models with few time constraints support the resolution of
problem instances with larger numbers of VMs, but at the expense of solution quality.

The results for scenarios with 400 and 500 VMs show that CBP-5min signif-
icantly outperforms the MBP-1h model, showing that for medium sized scenarios
an hourly aggregation of the resource usage data does not provide the consolidation
problem with enough information to find a solution as efficient as our proposal. For
scenarios with more than 500 VMs, the difference of quality between the solutions
provided by CBP-5min and MBP models further increases: the difference with re-
spect to the best option between MBP-12h and MBP-1d models ranges from 19% to
26% .

We can conclude that the CBP-5min allows to find a feasible solution for every
VMs set size, up to 1200 VMs. While for small scenarios (less than 300 VMs) the
CBP is equivalent to a MBP-5min that could solve to optimality the global allocation
problem, starting from medium-sized scenarios (400 VMs) the proposed solution out-
performs other consolidation models both in terms of resolution time and number of
required physical nodes.

4.6 Sensitivity to workload composition

The adoption of the CBP technique makes it feasible to resolve large placement prob-
lems with multiple time constraints, thus allowing to leverage the presence of com-
plementary workload patterns to minimize the number of physical nodes. In this last
experiment we evaluate the sensitivity of the CBP proposal to the workload com-
position, considering a percentage of complementary patterns ranging from 10% to
90% in two scenarios with 600 and 1000 VMs. Figure 6 shows the solution quality
gain, that is the difference in the solution quality between the CBP-5min placement
technique and the MBP-1d model, which does not consider multiple time intervals.

As expected, the solution quality gain increases as the percentage of complemen-
tary workload patterns increases, confirming the capability of the CBP proposal to
take advantage of complementary resource utilization to achieve a good VMs place-
ment on the physical infrastructure. Moreover, it is interesting to note that, even for
low percentages of complementary patterns (10%), the CBP placement significantly
outperforms the MBP-1d model. This result shows that solving a placement problem
with a fine granularity in terms of time intervals (5 minutes) allows the system to
exploit any existing difference in the VMs resource utilization patterns to minimize
the number of used physical nodes. This is an important results because it confirms
that the CBP solution represents a winning option for a wide range of workloads and
not only in presence of complementary patterns.
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5 Related work

The placement of VMs over the physical nodes of cloud data centers represents a crit-
ical task to limit the costs of the infrastructure management and avoid waste of com-
puting resources. Efficient VM placement can reduce both the environmental foot-
print of IT infrastructures and the energy-related cost for the cloud business firms [3,
2].

The main goal of VMs placement is to minimize the number of physical nodes
required to allocate a given set of VMs in the data center. To this purpose, large data
centers can leverage techniques such as selectively powering down idle servers or us-
ing hardware support for idle sleep states [9]. However, exploiting these techniques
requires the resolution of the optimization problem described in Section 3, to de-
termine how to map VMs over the physical nodes of the cloud infrastructure. This
problem is a multi-dimensional bin-packing with bounds related to the requirement of
multiple VM resources at different time intervals over a future planning period. Solv-
ing this problem is a challenge from a computational point of view, where standard
optimization algorithms struggle to reach an optimal solution within acceptable time
frames. To reduce the dimensionality of the problem, three classes of solutions have
been proposed in literature or applied in real systems: use of VMs nominal maximum
requirements, problem simplification discarding several dimensions of the problem,
and adoption of heuristics.

Considering only the nominal maximum requirements of each VM is the most
straightforward solution. Basically, we simply discard any information about VM
demands over time and we consider only the nominal VM peack requirements. This
solution is widely adopted when PaaS-level (often threshold-based) are applied to
automatically spawn or destroy VMs based on resource utilization and service level
measurements [29]. As this approach simplifies the bin-packing problem to the point
where no actual problem solver is required (the VMs may be dimensioned to be an
exact fraction of the node computational power), it is widely applied [6–8]. However,
such solution introduces the unreal assumption that every VM uses the 100% of its
resources. Any under-utilized VM determines a waste of resources in the data center



and increases the carbon footprint of the cloud infrastructure. The PaaS-level creation
or dismissal of VMs may mitigate the waste of resources, but it requires an additional
level of software installed within the VMs. Our approach has a wider applicability
because we focus on a IaaS-only vision of the data center management.

The second approach reduces the problem dimensionality by limiting the number
of VM resources and time intervals that are considered in the bin-packing problem.
For example, instead of considering multiple resources (CPU, memory, network I/O,
disk I/O) and a fine-grained division of the planning period, the focus may be limited
to just the CPU requirement during a 24-hour long time interval [10,4]. Our exper-
iments clearly shows the high penalty in terms of sub-optimal VM placement that
is caused by reducing the number of time periods considered in the VM placement
problem and we show how our proposal outperforms these solutions. It is worth to
note that, although we consider only CPU requirements in our experiments, our ap-
proach can be easily extended to take into account additional resources. Furthermore,
the basic idea of splitting the global bin packing problem into smaller building blocks
can be applied to other formalizations of the VMs placement problem, such as the one
in [25].

Finally, the third approach to address the computational issues of the bin-packing
problem is to exploit heuristics to reduce the computational cost of the solution. How-
ever, as pointed out in [11], most research is focused on problems with few dimen-
sions, while if we consider the impact of multiple resources considered in multiple
time intervals in a future planning period, the number of dimensions significantly
grows to the order of hundreds. The most popular heuristics are applied to problems
characterized by a number of dimensions ranging from one to three [30,31]. As the
dimensionality of the problem exceeds these values, the quality of the solution iden-
tified by the heuristics significantly drifts away from the optimum. Our approach is
completely different from these studies, because we reduce the number of VMs and
nodes involved in the bin-packing problem to form a building block of limited size
where we can easily apply complex optimization, without the need to reduce the
number of dimensions and constraints.

A first version of a class-based placement technique was proposed by the authors
in [16]. However, that preliminary work left as an open issue the critical choice of the
number of B-blocks. In this paper we propose a technique to automatically determine
that number and evaluate the performance of our proposal under a wide range of
scenarios. Moreover, we carry out a sensitivity analysis of the class-based placement
performance with respect to different workload compositions.

6 Conclusions

In this paper we tackle the critical problem of VMs placement in IaaS cloud com-
puting data centers, with particular attention to the scalability challenges of this task
in large cloud infrastructures. To cope with the scalability issues of current place-
ment techniques, we propose an alternative approach where VMs are not considered
as black boxes with independent resource requirements. Exploiting recent solutions
that can cluster together VMs exhibiting similar behaviors in terms of resource usage,



we propose a novel technique, namely Class-Based Placement (CBP), that solves a
small-size placement problem and replicates it as a building block to obtain the global
solution. The number of building blocks used to split the global problem is automat-
ically determined by the proposed CBP technique.

An extensive set of experiments demonstrates that our proposal outperforms ex-
isting solutions both in terms of scalability and quality solution, achieving a higher
performance gain for large data centers, which represent the most challenging sce-
nario for cloud computing. In particular, our proposal may reduce from 19% to 26%
the number of physical nodes required to host the VMs with respect to widely used
alternatives in case of medium-large scenarios. Finally, we evaluate the sensitivity of
the CBP placement performance with respect to the percentage of complementary
patterns in the cloud workload to give insights on the benefits achievable through our
proposal in case of different workload compositions.
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