
PAFFI: Performance Analysis Framework for Fog
Infrastructures in realistic scenarios

Claudia Canali∗, Riccardo Lancellotti∗
∗Department of Engineering ”Enzo Ferrari”, University of Modena and Reggio Emilia,

via Vivarelli 10, Modena, Italy
Email:{claudia.canali, riccardo.lancellotti}@unimore.it

Abstract—The growing popularity of applications involving the
process of a huge amount of data and requiring high scalability
and low latency represents the main driver for the success of
the fog computing paradigm. A set of fog nodes close to the
network edge and hosting functions such as data aggregation,
filtering or latency sensitive applications can avoid the risk
of high latency due to geographic data transfer and network
links congestion that hinder the viability of the traditional
cloud computing paradigm for a class of applications including
support for smart cities services or autonomous driving. However,
the design of fog infrastructures requires novel techniques for
system modeling and performance evaluation able to capture a
realistic scenario starting from the geographic location of the
infrastructure elements. In this paper we propose PAFFI, a
framework for the performance analysis of fog infrastructures
in realistic scenarios. We describe the main features of the
framework and its capability to automatically generate realistic
fog topologies, with an optimized mapping between sensors,
fog nodes and cloud data centers, whose performance can be
evaluated by means of simulation.

Index Terms—Fog computing, Framework, Optimization prob-
lems, Simulation

I. INTRODUCTION

The fog computing paradigm has received an increasing
attention as a solution to support applications characterized
by a huge amount of data to process and/or with specific
requirements related to low and predicable latency [1], [2].
Such characteristics are typical of increasingly popular ap-
plications where IoT sensors, geographically distributed over
a wide area, continuously collect data that need to be pro-
cessed, filtered and aggregated to extract useful information
for specific application purposes. Meaningful examples of
this kind of applications are related to smart cities scenarios,
such as traffic monitoring, support for autonomous driving,
smart grids, environmental monitoring and management, pub-
lic safety, etc. These applications are traditionally handled
through cloud computing systems, that are represented in the
left part of Fig. 1: in these architectures, the data collected
by the sensors are directly sent from the sensor layer to
the cloud layer where the data center(s) are located to be
processed and stored. However, this approach may lead to
high and unpredictable latency due to the geographic data
transfer; furthermore, we are exposed to the risk of network
congestion as the entire amount of data is sent to the cloud

servers to be processed, even in the cases where data could
be pre-processed (aggregated and filtered) to store in the
network core only a reduced set of meaningful data. The
emerging paradigm of fog computing represents a solution
addressing the cloud computing limitations through the use of
an intermediate layer of fog nodes that are interposed between
the cloud data center(s) and the sources of the data, as shown
in the right part of Fig. 1. Basically, the fog paradigm extends
the cloud computing by moving (part of) the computation
at the network edge, where the fog nodes are located. This
decreases the latency experienced by the applications and
reduces the amount of information transferred to the network
core that is limited to the output of the pre-processing tasks
carried out at the fog layer [1], [2].

The use of a fog computing infrastructure has been only
quite recently addressed in literature. Most of the existing
studies focus on the part of the infrastructure included between
the fog layer and the cloud data center(s): for example, the
studies in [3], [4] address the issue of optimizing the allocation
of the processing tasks sent by the fog nodes towards the cloud
servers. On the other hand, the mapping of data sources over
the fog nodes is usually not taken into account, assuming a
single hop wireless links between sensors and fog nodes [3]
or a fixed mapping that typically connects each sensor to the
closest fog node [5]. This first level of the fog infrastructure is
considered only in few studies in literature, such as [6], where
a formal model is proposed to optimize the mapping of the
workload coming from the sensors over the fog nodes.

In general, the exploitation of the fog computing paradigm
raises many new challenges: in [1], [2], the main open issues
and research directions about fog infrastructures supporting
IoT services and smart cities are identified and discussed. A
further open problem is the a lack of instruments supporting
the design and the performance analysis of distributed fog
computing infrastructures in realistic scenarios.

The main contribution of this paper is the proposal of a
framework, namely PAFFI (Performance Analysis Framework
for Fog Infrastructures), specifically designed to evaluate the
performance of a fog computing system considering different
alternative scenario parameters, including the mapping of the
data sources over the available fog nodes, by means of simula-
tion. The wide range of possible options in terms of resource
allocation and management within such complex distributed
systems, indeed, makes simulation the ideal tool to investigate978-1-7281-0875-9/19/$31.00 c©2019 IEEE

Fig. 1: Cloud and Fog Infrastructures

alternative strategies and settings. In order to provide high flex-
ibility and adaptability to different scenarios, the framework
has been designed according to a modular approach based
on building blocks that can be easily modified or re-arranged
to integrate new functionalities and options. Specifically, the
proposed framework takes as input a list of points of interest
coming from a real environment (e.g., addresses or street
names) that will be used as the input to define the location of
the sensors, the fog nodes and the cloud data center(s). These
entries are then geo-referenced by exploiting online available
services; the network delay between the elements of the fog
infrastructure is considered proportional to their geographic
distance. Then, the actual topology is generated considering
different options for mapping sensors over fog nodes and fog
nodes over cloud data center(s), including not only a naive
mapping based on the closest distance but also an optimized
mapping based on the solution of a formal model to minimize
the overall latency and processing time. The final step concerns
the performance evaluation of the overall fog infrastructure:
starting from the identified topology, the input scenario for
a network simulator is automatically generated considering
a model based on the queuing theory; finally, the output of
the simulation is analyzed to extract the main performance
metrics. To the best of our knowledge, PAFFI is the first
general purpose framework for fog analysis that introduces the
support for realistic scenario obtained through geo-referencing.

In this paper, the proposed framework is evaluated in a
specific case study based on the design of a prototype imple-
mentation of a smart city sensing application. The obtained
results show how the PAFFI framework enables an easy and
fast comparison of different alternatives to identify the best
topology of the fog infrastructure; moreover, the experiments
demonstrate how the optimized mapping brings significant im-
provements in the performance, avoiding the risk of overload
conditions over the fog nodes.

The rest of the paper is structured as follows. Section II
presents an overview of the fog infrastructure and of the
performance problems. Section III describes the core part
of the proposed framework, that is the mechanism for the

generation of the fog scenarios to evaluate. Section IV presents
the case study. Finally, Section V discusses some related
work and Section VI presents some concluding remarks and
discusses some future research directions.

II. PROBLEM DEFINITION

In this paper we consider a fog infrastructure, such as the
one represented in the right part of Fig. 1, consisting of three
layers: a sensor layer including wireless sensors that collect
and produce data, a fog layer responsible for a preliminary
processing of data from the sensors and a cloud layer which is
the final destination of the data. We assume that the considered
fog infrastructure supports smart cities applications, such as
traffic monitoring or environmental sensing. In this scenario,
the sensors collect the information about the city status of in-
terest (e.g., traffic intensity, air quality [7], U.V. rays intensity).
The collected data are sent to the intermediate fog layer for
pre-processing tasks (e.g., filtering and aggregation) with the
twofold aim of reducing the latency perceived by the smart
cities application and decreasing the network traffic towards
the cloud servers located at the network core, where the pre-
processed data are finally sent to be stored and/or further
processed to provide value-added services such as traffic or
pollution forecast [7].

The problem of performance evaluation in such a complex
and geographically distributed infrastructure concerns several
aspects, including the management of data flows from sensors
to fog nodes and from fog nodes to cloud data center(s). It is
worth to note that in this paper we do not take into account
the inner dynamics of the cloud data centers because several
solutions have been already proposed in literature for that
level [8], [9], focusing instead on the management of the data
flows at the lower levels.

To formally describe our problem, we assume a stationary
scenario with a set of S similar sensors distributed over a
geographical area. Furthermore, we assume that sensors are
producing data at a steady rate, with a frequency that we
denote as λi for the generic sensor i. We anticipate that out
case study (and the framework code supporting this feature)
will focus on all sensors producing data with the same rate,
but it is straightforward to enrich the framework to support
heterogeneous data rates for the sensors, without the need to
update the underlying model. The fog layer consists of a set
of F nodes receiving data from the sensors and performing
operations on them. These operations typically include pre-
processing of the data, such as filtering and/or aggregation, or
may include some form of analysis to identify anomalies or
problems as fast as possible. We denote the processing rate of
the generic fog node j as µj (also for the fog nodes we assume
an homogeneous nature, but we can extend the framework to
handle also heterogeneous fog nodes scenarios). The refined
data samples from the fog nodes are then sent to the cloud
data center k ∈ C, where additional analysis can be carried
out and the information is stored.

The geographically distributed nature of the fog infras-
tructure is modeled using two matrices of distances: δi,j to

describe the sensors-to-fog network delays, and δj,k for the
fog-to-cloud delays.

For a complete summary of the symbols used in the problem
formalization, refer to Tab. I.

TABLE I: Notation.

Symbol Meaning/Role

Model parameters

S Set of sensors
F Set of fog nodes
C Set of cloud data centers
λi Outgoing data rate from sensor i
λj Incoming data rate at fog node j
1/µj Processing time at fog node j
δi,j Communication latency between sensor i and fog node j
δj,k Communication latency between fog j and cloud k

Model variables

i Index of a sensor
j Index of a fog node
k Index of a cloud data center

Data flows description

xi,j Data flow from sensor i to fog node j
yj,k Data flow from fog node j to cloud data center k

Scenario description

δ Average network delay
δµ Network delay to processing time ratio
ρ Infrastructure load

To define the data flows, we introduce two matrices of
boolean variables. First, matrix X = {xi,j}, i ∈ S, j ∈ F ,
describes the sensors-to-fog mapping in such a way that
xi,j = 1 if sensor i sends data to fog node j, while xi,j = 0
if this data exchange does not occur. To support some stateful
pre-processing (stateful pre-processing includes also trivial
aggregation such as a moving window average), we assume
that all the data of a sensor should be sent to the same fog
node. Hence, for each i, there is only one value of j such
that xi,j = 1. Second, matrix Y = {yj,k}, j ∈ F , k ∈ C,
captures the fog-to-cloud mapping with yj,k = 1 if fog node
j sends data to cloud data center k, while yj,k = 0 if this data
exchange does not occur. As for the sensor-to-fog mapping,
each fog nodes sends all its data to just one cloud data center.

Given a description of the data flows, we consider useful to
introduce a symbol to describe the amount of data arriving at
a fog node λj , defined as:

λj =
∑
i∈S

xi,j · λi (1)

To describe the model, the main parameters of interest are
the sensors data rate λi, the processing rate µj and the network
delays δi,j and δj,k. Applying the Queuing Theory to this
problem formulation, similarly to the modeling in [6], we can
define the expected performance of a given sensor-to-fog and
fog-to-cloud mappings as follows:

Tnetsf =
1∑

i∈S λi

∑
i∈S

∑
j∈F

λixi,jδi,j (2)

Tnetfc =
1∑

j∈F λj

∑
j∈F

∑
k∈C

λjyj,kδj,k (3)

Tproc =
1

|F|
∑
i∈S

∑
j∈F

xi,j ·
1

µj − λj
(4)

Specifically, Tnetsf is the average network delay (weighted
by the data flow intensity in the sensor-to-fog mapping)
experienced by the jobs passing from the sensors to the
fog nodes. Similarly, Tnetfc is the network delay from the
fog nodes to the cloud data centers. Finally, Tproc is the
response time (including processing and queuing) at the fog
node. This definition is obtained considering a fog node as a
M/G/1 queuing system (that is with a Poisson arrival stochastic
process with average inter-arrival time 1/λj) and a processing
time that is typically described with a Gaussian probability
with a mean 1/µj and a standard deviation σj .

The parameters λi, µj , δi,j , and δj,k are used to estimate
the expected response time of a fog infrastructure. However,
when defining experiments and designing a fog scenario,
we consider more useful to rely on simplified parameters
such as the average network delay δ, the ratio between the
network delay and the processing time δµ or the load on
the infrastructure ρ. Moreover, each of these parameters may
be a useful driver for a sensitivity analysis. The parameters
are defined as follows, and from them it is straightforward to
derive the other model parameters used in the above equations.

δ =

∑
i∈S

∑
j∈F δi,j +

∑
j∈F

∑
k∈C δj,k

|S| · |F|+ |F| · |C|
(5)

δµ = δ ·
∑

j∈F µj

|F|
(6)

ρ =

∑
i∈S λi∑
j∈F µj

(7)

III. FRAMEWORK FOR FOG SCENARIOS GENERATION

In this section we describe the proposed PAFFI framework
for the generation of fog scenarios starting from a realistic
setting for smart cities applications.

Fig. 2 shows the overview of the framework according to
the BPMN specification. The framework consists of three main
building blocks, namely Geo-referencing, Scenario generation
and Performance evaluation, implementing the main steps of
the process that leads, starting from a simple list of points of
interest (POIs), to the generation of a fog infrastructure for a
smart city application, with the possibility to easily explore a
wide range of scenario setups and parameters, and finally to
its evaluation based on performance metrics such as response
and queuing times. Each of the main steps exploits external
services to carry out the required functionalities.

The reference language of the entire framework is Python.
It is worth to note that the modular approach followed in the
overall design of our proposal as well as the choice to rely
on well known open source technologies for the framework
implementation and on external online services allows the
developers to easily extend the proposed framework to modify

Fig. 2: BPMN framework overview

functionalities and integrate new features. Every module of
the PAFFI framework, indeed, can be easily modified or sub-
stituted with the only requirement to follow the input/output
formats established for the data exchange between modules.
Furthermore, the modular structure of the framework enables
and facilitates what-if-analysis about the performance of the
fog infrastructure. The framework will be made available by
the authors on request.

The details of each step, shown in Fig. 3, are described in
the rest of this section.

A. Geo-referencing

The first building block of the proposed framework is
responsible for the geo-referencing of the main elements of
the fog infrastructure, that are sensors, fog nodes and cloud
data centers. The process is schematized in Fig. 3a. The
input for the geo-referencing module is represented by a lists
of POIs (one entry per row) expressed as references to the
real environment where the smart city application will be
developed: specific addresses or street names (in this case the
POI is considered in the geometric center of the street) where
the elements of the fog infrastructure will be actually located.
The process is iterated three times, considering one separated
list for each category of elements (sensors, fog nodes and cloud
data centers). Then, the geo-referencing module parses the
POIs list and retrieves the coordinates of the indicated points
from the external Web service OpenStreetMap Nominatim1.
The data are finally validated, removing the entries whose
geographic reference was not available through the online
service, and producing as output the geo-referenced lists with
geographic coordinates associated to each entry.

B. Scenario generation

The final aim of the second building block is the generation
of the fog scenario for the smart city application. As shown
in Fig. 3b, the input for this process consists of the lists of
geo-referenced POIs along with the number of sensors, fog
nodes and cloud data centers that will actually compose the
fog infrastructure: for each infrastructure element, a number
of locations equal to the corresponding input is randomly
extracted from the corresponding geo-referenced list. Once
the final locations of all the elements of the fog infrastructure
are defined, the sensor-to fog and the fog-to-cloud distances
are computed using the haversine formula. The distances are

1https://wiki.openstreetmap.org/wiki/Nominatim

(a) Geo-referencing

(b) Scenario generation

(c) Performance evaluation

Fig. 3: Details of PAFFI Building Blocks

then scaled according to the vale of δ to obtain the network
delays δi,j and δj,k according to Eq. (5). Further inputs are
the values of the parameters defining the scenario in terms
of average load on the infrastructure (ρ) and ratio between
network delay and processing time (δµ). Given their values, it
is straightforward to derive the parameters λ and µ from the
Equations (7) and (6): as anticipated in the previous section,
we assume a homogeneous nature for the sensors, producing
data at the same rate, and for the fog nodes, characterized by
the same processing rate.

At this point, the connected topology of the fog infrastruc-
ture has to be defined in order to determine how the data
flow from sensors to fog nodes and then from fog nodes to

cloud data centers. To define the sensors-to-fog and the fog-to-
cloud mappings (expressed by X and Y matrices in the model
defined in Section II), we have two options. First, a naive
mapping selecting the closest node based on the geographical
distance: in this case, the sensors will send data to the nearest
fog node, which is a typical approach in literature [3], [5].
Second, an optimized mapping that, based on the scenario
parameters, minimizes the average network delay and response
time experienced by the elements of the fog infrastructure:
basically, this mapping minimizes the sum of the contributions
to the infrastructure performance Tnetsf , Tnetfc and Tproc
defined in Equations (2), (3), and (4), respectively.

The naive topology connection can be easily obtained by
computing the geographic distances between the element of
the infrastructure starting from the geo-referenced lists of POIs
to finally produce the naive fog scenario description as the
output of the second building block of the PAFFI framework.
On the other hand, the generation of the optimized topology
is a more complex task requiring the generation and the
resolution of the corresponding optimization problem. To this
aim, the proposed framework is able to automatically generate
the optimization problem based on the scenario parameters
and implemented with the AMPL modeling language [10],
creating the AMPL files .mod, .dat and .run required by
solvers. Then, the framework invokes an external AMPL-based
optimizer (such as KNITRO2) that solves the problem and
generates the optimized sensors-to-fog and fog-to-cloud map-
pings. The complete formulation of the optimization problem
is similar to the one proposed in [6]. Finally, the framework
parses the solver output and produces the optimized fog
scenario description. In both cases (naive and optimized), the
scenario description is a file in JSON format containing: the
lists of sensors, fog nodes and cloud data centers; the outgoing
data rates λi from the sensors; the matrices of the connections
X = {xi,j}, i ∈ S, j ∈ F and Y = {yj,k}, j ∈ F , k ∈ C; the
network delays δi,j and δj,k; the processing times 1/µj at the
fog nodes.

C. Performance evaluation

The last framework building block is responsible to carry
out the performance evaluation of the overall fog system by
means of simulation. To this aim, the building block takes
as input a JSON description of the fog scenario along with
the simulation setup, as shown in Fig. 3c; starting from this
information, the input scenario for a network simulator is
automatically generated considering a model based on the
M/G/1 queuing theory. To run the simulation, we make use of
the discrete event network simulator OMNeT++ [11]; hence,
two files are created as input for the simulator: the .ned
file containing the network description and the .ini file
containing all the other simulation parameters. After running
the simulation, the output of the simulator is processed and
analyzed to extract the main performance indicators for the fog
scenario: the final output of the performance analysis includes

2https://www.artelys.com/solvers/knitro/

indicators extracted both at the level of the fog nodes and of
the cloud data centers. For each fog node, we measure the
node utilization, the queue length and the time spent by the
jobs in the node waiting queue; at each cloud data center, we
extract the average response time, queuing time and processing
time experienced by all the incoming jobs through their path
from the sensors to the cloud.

IV. EXPERIMENTAL RESULTS

A. Case study description

The considered case study concerns the design of a proto-
type implementation of a smart city application, where several
sensors collect information on the environment, such as air
quality [7], traffic (i.e., number of vehicles passing on the
streets) or other metrics (such as U.V. rays intensity) to
monitor in real time several metrics related to the quality of
living in a city. The prototype aims to demonstrate the viability
of fog computing for this kind of application. Due to the
prototype nature of the infrastructure, we consider the number
of sensors and fog nodes to be limited. In particular, in this test
case, we consider 20 sensors and 3 fog nodes. Furthermore,
due to the small geographic area involved, we assume that
just one cloud data center is enough to collect all the data and
to support any smart city application. The locations hosting
the elements of the fog scenarios are randomly selected from
a list of suitable candidates: the locations for the sensors are
selected from the list of the streets of the city, while the fog
nodes locations are selected from a list of public buildings
belonging to the municipality; the cloud data center is located
in the site of the municipality data center.

Other significant scenario parameters are the outgoing data
rate of the sensors, the processing capacity of the fog nodes
and the network delays. These parameters can be derived
by the scenario parameters ρ, δµ and δ. Specifically, in our
experiments we consider ρ = 0.5, which means that the fog
infrastructure is only half utilized on average, leaving space
to handle traffic surges, increasing complexity of the deployed
services, or to some degree of unbalance in the workload. For
the impact of network delays, we consider an average delay
in the geographic links in the order of δ = 10 ms (the order
of magnitude is obtained from preliminary experimental tests)
and δµ = 1, meaning that the service time is comparable
with the network delay (preliminary tests suggested that this
scenario is the most interesting as both load balancing and
network topology optimization play a role in the resulting
performance). From these parameters we infer λi = 7.5 jobs/s
and µj = 100 jobs/s. It is worth to note that the proposed
framework supports an easy exploration of a large space of
scenario setups. For space reasons we present just one analysis,
that we consider most significant from a smart city point of
view, concerning the impact of the fog infrastructure topology
on the performance.

B. Comparison between Naive and Optimized Mapping

The main comparison carried out through our experiments
is about the impact of the topology mapping on the fog

infrastructure performance: it is worth to note that, as we have
only one cloud data center in our case study, the problem is
limited to the sensors-to-fog mapping, for which we compare
two main alternatives: the previously-described naive mapping,
where each sensors sends data to the nearest fog node, and the
alternative mapping based on the solution of an optimization
problem as described in Section III-B.

 44.6

 44.61

 44.62

 44.63

 44.64

 44.65

 44.66

 44.67

 44.68

 44.69

 44.7

 44.71

 10.86 10.88 10.9 10.92 10.94 10.96 10.98 11 11.02 11.04 11.06

L
a
ti
tu

d
e

Longitude

(a) Naive mapping

 44.6

 44.61

 44.62

 44.63

 44.64

 44.65

 44.66

 44.67

 44.68

 44.69

 44.7

 44.71

 10.86 10.88 10.9 10.92 10.94 10.96 10.98 11 11.02 11.04 11.06

L
a
ti
tu

d
e

Longitude

(b) Optimized mapping

Fig. 4: Naive and Optimized mapping

A visual representation of the two mappings is shown in
Fig. 4: Fig. 4a shows the naive mapping, while Fig. 4b presents
the optimized mapping. Both figures present the position of
data center (filled diamond) and of the three fog nodes (filled
square, circle and triangle). Furthermore, we show the location
of the sensors, whose (non-filled) shape reveals their mapping
over the fog nodes: the shape of the sensor, indeed, is the
same of the fog node receiving its data flow. If we focus on
the naive mapping in Fig. 4a, we observe that the triangle fog
node receives data from just one sensor, while the circle fog
node is at risk of overload, due to the high number of sensors
it is connected to. The optimized mapping in Fig. 4b corrects
this unbalancing and provides a better load sharing among the
fog nodes.

C. Performance analysis

The performance of the two fog scenarios, characterized
by a different sensors-to-fog mapping, are compared using
the OMNeT++ simulator [11]. We rely on the standard mod-
ules provided by the simulator to capture the details of the
scenario. As the considered problem representation is based
on an M/G/1 queuing theory formalization, our simulation
implements a Poisson arrival process (with an average inter-
arrival time 1/λi = 133 ms) from the sensors and a Gaussian
processing time distribution characterized by an average time
1/µj = 10 ms and a standard deviation σj = 2.2 ms. The
standard deviation of the processing time is obtained from
the prototype implementation of a sensing application that
collects frames from a video and extracts useful information
such as the presence of vehicles or pedestrians. The simulation
is limited to just 5 minutes because some dynamics that
characterize our scenarios (such as the occurrence of overload)
make even the transient periods meaningful, without the need
to wait for a steady state. Each simulation is run 10 times
and the results are averaged to guarantee that the results are
statistically significant.

TABLE II: Performance comparison

Parameter Naive mapping Optimized mapping

Fog node statistics

Utilization 0.30, ≈ 1, 0.075 0.54, 0.53, 0.45
Queue length 0.07, ≥ 1987, 0.0031 0.33, 0.31, 0.19

Queuing time [ms] 2.2, ≥ 17650, 0.41 6.0, 5.9, 4.1

Cloud statistics

Response time [ms] ≥ 12807 30.8
Queuing time [ms] ≥ 12786 5.4

Processing time [ms] 10 10

From the simulation runs we extract a set of performance
indicators, summarized in Tab. II, both at the level of the
cloud data center and of the fog nodes. To better understand
the behavior of the system under the two different mappings,
we start analyzing the performance at the level of fog nodes:
in the first part of the table, we report the values (one for
each fog node) of three considered metrics, that are node
utilization, size of the queue and time spent by the jobs in
the waiting queue. Starting from the utilization of the fog
nodes (that is the fraction of time spent by the node processing
jobs) we observe that the naive mapping determines a clear
unbalancing in the load distribution at the second fog node
(the one represented as a circle in Fig. 4a) showing signs
of overload (as the time evolution of the node performance
metrics suggests that the node is not in a steady state, the
reported values for this node are approximations or lower
bounds), with a utilization basically equal to one. The overload
on this node is further testified by the very high queue length
and by the corresponding time spent by the jobs in the waiting
queue. The time evolution of the fog node queue lengths for
two fog nodes is shown in Fig. 5; as the values spans over

multiple orders of magnitude, we use a logarithmic scale for
the y axis. The node fog0, marked with a filled square in
Fig. 4a, presents a queue length that oscillates between 0
and 7 jobs, without clear trends; on the other hand, the node
fog1, that is the node marked as a filled circle in Fig. 4a
and presenting signs of overload, shows a queue evolution
that grows over time (the growth is linear even if, due to the
logarithmic scale, the curve is not shaped as a straight line),
consistently with an overload condition.

Considering the optimized mapping, instead, we observe a
fair level of load sharing resulting in a similar utilization of
every node, and with small queue lengths (on average less
than 1). As a consequence, the average queuing time is in the
order of 4-6 ms, that is comparable with the service time (that
is 10 ms).

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

Q
u
e
u
e
 L

e
n
g
th

Time [s]

fog0
fog1

Fig. 5: Queue lenght analysis

Switching to the data collected at the cloud data center, the
average response time experienced by the incoming jobs (in-
tended as the time spent between the initial transmission by the
sensors and the arrival at the cloud) is the most straightforward
performance indicator. A comparison of this metric clearly
shows how the optimized mapping outperforms the naive
mapping. Indeed, the response time for the naive mapping
explodes (the value grows constantly as the simulation time
increases). Since the service time for every job is the same
for every simulated scenario (as shown in Table II) and the
naive mapping explicitly aims at reducing the network delay,
the different performance is due to the queuing time in the fog
nodes, as shown by our experiments. This result is consistent
with the overload in one fog node previously pointed out when
discussing the simulation results at the level of fog nodes.

The effect of the overload on a fog node can be observed
also if we consider the probability distribution of response time
as shown in Fig. 6. In Fig. 6a we observe the presence of two
separate sets of values. The first column of the histogram, with
a large number of requests characterized by a response time
of less than 1 s, is related to the jobs processed by the non-
overloaded nodes. On the other hand, the jobs processed by
the overloaded node (accounting for a large fraction of the
total requests, due to the number of sensors sending data to

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

%
 o

f
s
a
m

p
le

s

Response Time [s]

Naive mapping

(a) Naive mapping

 0

 5

 10

 15

 20

 25

 0 0.05 0.1 0.15 0.2 0.25 0.3

%
 o

f
s
a
m

p
le

s

Response Time [s]

Optimized mapping

(b) Optimized mapping

Fig. 6: Response time

that fog node) experience a response time evenly distributed
over a wide range of values, with a response time that grows
over time with the size of the queue, shown in the remaining
columns of the histogram in Fig. 6a. When no overload occurs,
such as for the optimized mapping shown in Fig. 6b, the
overall response time is orders of magnitude smaller, and the
probability distribution follows a curve that depends on the
Gaussian distribution of the service time, on the network delay
and on the queuing time.

V. RELATED WORK

The benefits of fog computing for applications requiring
to manage a large amount of (possibly latency-sensitive) data
compared to a traditional cloud architecture has been widely
pointed out in literature. For example, Wen et al. [1] and Yi et
al. [2] both discuss the main benefits, the core challenges
and the issues in fog system, with the latter providing special
attention on the scalability of the service orchestration in such
scenario.

When considering performance and scalability in fog com-
puting, it is common to consider network-related delays as
the main metric, as in [4], even if more complex metrics that
consider both network delay and processing time [6] or that

take into account power consumption [3] have been proposed.
While our approach is more tailored to the model used in [6],
we believe that the PAFFI framework is very flexible and
can extended to support also other performance metrics and
models.

Also the focus on the layers of a fog infrastructure is highly
differentiated in literature. Some papers focus on the fog-to-
cloud interaction, assuming that the mapping of sensors over
the fog nodes is based on the limited range of wifi or bluetooth
connections [3] or fixed due to design choices [5]. In these
cases workload unbalancing is handled through job redirection
that is decided on the basis on some optimization problem [3],
[4] or using some adaptive algorithm that runs on each fog
node [12]. Other studies explicitly focus on the mapping of
sensors over the fog nodes [6], assuming either a wide-range
wireless connection (such as, LoRa) or some technique for
network traffic engineering in the fog infrastructure.

Furthermore, concerning the techniques used for perfor-
mance evaluation, multiple approaches are available. Some
papers rely on purely theoretical models based on MILP such
as [4], [6], [13], with the latter paper focusing on a more gen-
eral problem related to data stream processing characterized by
a model similar to the one we consider in fog computing. Other
papers rely on simulators, both ad-hoc developed simulators
(for example based on MATLAB) [3], [12], and general
purpose simulators [14]; for a discussion on the simulation
of fog systems, the reader may refer to [15]. Finally, some
papers base their evaluation on small scale prototypes [5]. Our
framework fits perfectly in this heterogeneity as it supports
both theoretical models and simulation, integrating an interface
to interact with the Omnet++ [11] simulation engine.

As a closing remark, limited effort has been devoted to the
problem of creating realistic scenarios for a geographically
distributed network. While some tools have been used to model
fog computing platforms that manage geographical data [14],
they typically lack a general-purpose support to create a
realistic fog infrastructure description. The most common
approach is to simply consider uniformly-generated random
values for the network latency [4]. Our framework provides a
major contribution with respect to this issue introducing the
support to design realistic network topologies starting from
lists of POIs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a flexible and modular framework
supporting the design and the performance evaluation of a
fog infrastructure for smart cities applications where data
flows generated by IoT sensors are pre-processed by fog
nodes before going to cloud data centers for final storage and
processing. Starting from simple lists of POIs, expressed as
addresses or street names, and from few parameters defining
the expected workload and the processing capabilities of the
nodes, the proposed framework is able to generate realistic
fog scenarios with optimized sensors-to-fog and fog-to-cloud
mappings. Evaluated in a specific case study related to the
design of a smart city sensing application, the results show

how the PAFFI framework provides a useful evaluation of
parameters and alternatives for the identification of the best
fog infrastructure. The proposed framework represents a work
in progress that will be extended in future works. In particular,
we plan to add new modules to include fog-to-fog cooperation
strategies to improve the load balancing in processing the data
flows coming from the sensors, supporting the cooperation
mechanism both at the level of topology generation and of
simulation.

REFERENCES

[1] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for internet of things services,” IEEE Internet Computing,
vol. 21, no. 2, pp. 16–24, Mar 2017.

[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data, ser. Mobidata ’15. ACM, 2015, pp. 37–42.

[3] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload
Allocation in Fog-Cloud Computing Toward Balanced Delay and Power
Consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, Dec 2016.

[4] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards
minimizing delay in the internet of things,” in 2017 IEEE International
Conference on Edge Computing (EDGE), June 2017, pp. 17–24.

[5] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A
hierarchical distributed fog computing architecture for big data analysis
in smart cities,” in Proceedings of the ASE BigData & SocialInformatics
2015, ser. ASE BD&SI ’15. New York, NY, USA: ACM, 2015, pp.
28:1–28:6.

[6] C. Canali and R. Lancellotti, “A Fog Computing Service Placement for
Smart Cities based on Genetic Algorithms,” in Proc. of International
Conference on Cloud Computing and Services Science (CLOSER 2019),
Heraklion, Greece, May 2019.

[7] A. Bigi, G. Veratti, S. Fabbi, O. Ziven, L. Po, and G. Ghermandi,
“Forecast of the impact by local emissions at an urban micro scale
by the combination of lagrangian modelling and low cost sensing
technology: the TRAFAIR project,” in Proc. of 19th International
conference on Harmionisation within Atmospheric Dispersion Modelling
for Regulatory Purposes, Bruges, Belgium, June 2019.

[8] C. Canali and R. Lancellotti, “Scalable and automatic virtual machines
placement based on behavioral similarities,” Computing, vol. 99, no. 6,
pp. 575–595, June 2017.

[9] L. Wei, C. H. Foh, B. He, and J. Cai, “Towards Efficient Resource Allo-
cation for Heterogeneous Workloads in IaaS Clouds,” IEEE Transactions
on Cloud Computing, vol. 6, no. 1, pp. 264–275, 2018.

[10] “AMPL: Streamlined modeling for real optimization,” 2019, available
at https://ampl.com/, last accessed on 10th Jul 2019.

[11] “OMNeT++ discrete event simulator,” 2019, available at
https://omnetpp.org/, last accessed on 2nd Sep 2019.

[12] R. Beraldi, H. Alnuweiri, and A. Mtibaa, “A Power-of-Two Choices
Based Algorithm for fog Computing,” IEEE Transactions on Cloud
Computing, vol. 7161, no. c, pp. 1–12, 2018.

[13] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,” in
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, ser. DEBS ’16. ACM, 2016, pp. 69–80.

[14] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[15] S. Svorobej, P. T. Endo, M. Bendechache, C. Filelis-Papadopoulos,
K. M. Giannoutakis, G. A. Gravvanis, D. Tzovaras, J. Byrne, and
T. Lynn, “Simulating fog and edge computing scenarios: An overview
and research challenges,” Future Internet, vol. 11, no. 3, pp. 1–15, 2019.

