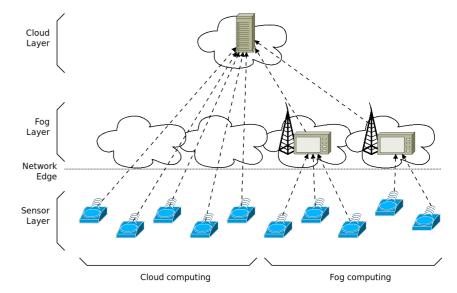


PAFFI: Performance Analysis Framework for Fog Infrastructures in realistic scenarios

Claudia Canali, <u>Riccardo Lancellotti</u>


Department of Engineering "Enzo Ferrari" University of Modena and Reggio Emilia

Fog computing

- Cyber-physical systems
 Distributed sensors
 - \rightarrow Huge amount of information to handle
- Cloud approach:
 - High latency
 - Risk of network congestion
- Some critical applications:
 - Autonomous driving
 - Support for smart cities

- Alternative paradigm
 → Fog computing
 - Presence of Fog nodes
 - Data aggregation and filtering
 - Latency-bound tasks

Challenges of Fog computing

- Service placement
 - Which services on fog / cloud
- Data flows mapping
 - Sensor nodes to fog nodes connection
- Adaptive load balancing
 - Cooperation strategies
- \rightarrow Need for realistic scenarios
 - Use of geo-referenced data
 - Flexible generation of experimental setups
 - Help for performance evaluation

- Performance Analysis Framework
 for Fog Infrastructures
- Realistic scenarios based on geographic data
- Support for performance analysis
 → OMNeT++ simulation framework
- Plugin-based approach for topology mapping
 → arbitrary connections among nodes
- Highly flexible and configurable
 → Python as main development tool

Performance model

- Performance based on queuing theory
- 3 types of nodes: sensor, fog, cloud
- Description of node behavior:
 - Outgoing data rate from sensor i: λ_i
 - Processing rate at fog node j: μ_j
- Topology connections:
 - Sensor \rightarrow Fog connections: $X_{i,j}$
 - Fog \rightarrow Cloud connections: $y_{j,k}$
 - Network delay: $\delta_{i,j} \delta_{j,k}$

Introducing PAFFI

- Contributions to response time:
 - Sensor \rightarrow Fog avg net delay
 - Fog \rightarrow Cloud avg net delay
 - Fog processing time
- Parameters to describe scer
 - Avg net delay
 - Net / Proc balance
 - System load

$$T_{netfc} = \frac{1}{\sum_{j \in \mathcal{F}} \lambda_j} \sum_{j \in \mathcal{F}} \sum_{k \in \mathcal{C}} \lambda_j y_{j,k} \delta_{j,k}$$
$$T_{proc} = \frac{1}{|\mathcal{F}|} \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{F}} x_{i,j} \cdot \frac{1}{\mu_j - \lambda_j}$$
narios

 $T_{netsf} = \frac{1}{\sum_{i \in \mathcal{S}} \lambda_i} \sum_{i \in \mathcal{S}} \sum_{i \in \mathcal{F}} \lambda_i x_{i,j} \delta_{i,j}$

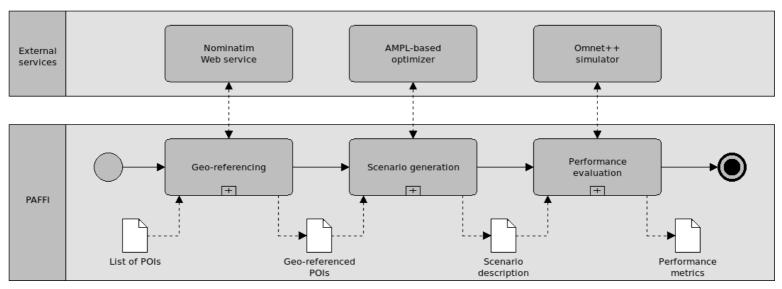
1

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

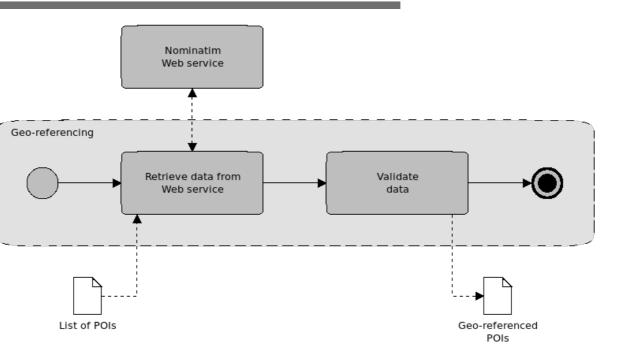
$$\delta = \frac{\sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{F}} \delta_{i,j} + \sum_{j \in \mathcal{F}} \sum_{k \in \mathcal{C}} \delta_{j,k}}{|\mathcal{S}| \cdot |\mathcal{F}| + |\mathcal{F}| \cdot |\mathcal{C}|}$$

$$\delta \mu = \delta \cdot \frac{\sum_{j \in \mathcal{F}} \mu_j}{|\mathcal{F}|}$$

$$\rho = \frac{\sum_{i \in \mathcal{S}} \lambda_i}{\sum_{j \in \mathcal{F}} \mu_j}$$


 \mathbf{T}

Framework architecture

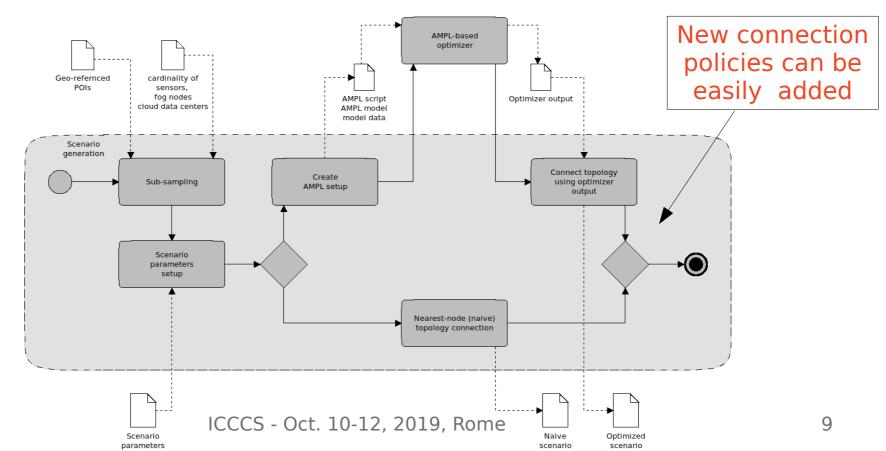


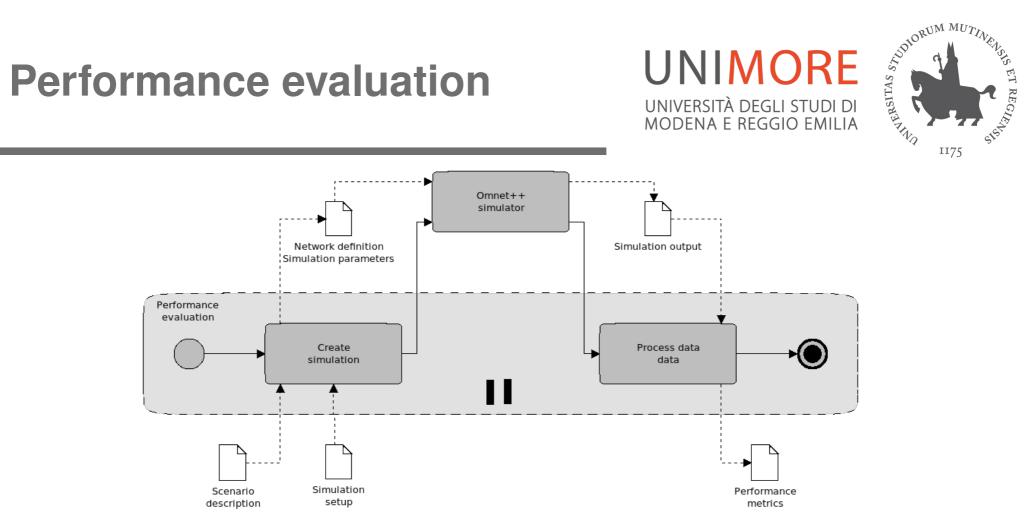
- 3 main components
- Use of external services
 - Nominatim API (Open Street Map)
 - AMPL optimization language
 - OMNeT++ simulation framework

Geo-referencing

- Input: list of POIs
- Output: geo-referenced and validated data

1175


Scenario generation



- Sub-sample data
- Connect topology:
- Create scenario ($\delta_{i,j} \delta_{j,k} \lambda_i \mu_j$)

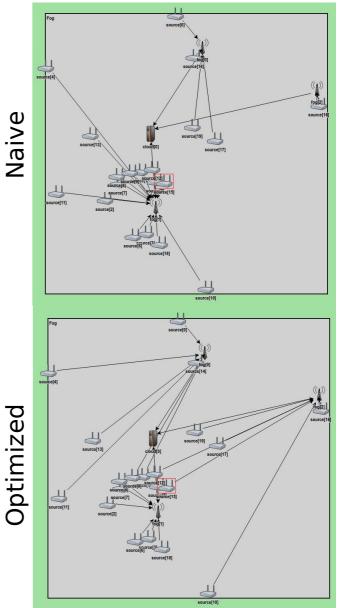
- Naive connection (nearest node)
- Optimized connection (AMPL)

- Create OMNeT++ files:
 - Simulated network description (.ned)
 - Simulation parameters (.ini)
- Use of template files

PAFFI in action

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

- 44.71 44.7 44.69 44.68 44.67 Δ .atitude 44.66 44.65 44.64 Ο 44.63 00 44.62 Naive 44.61 44.6 10.86 10.88 10.9 10.92 10.94 10.96 10.98 11 11.02 11.04 11.06 Longitude 4.71 44.7 44,69 44.68 44.67 _atitude 44.66 44.65 44.64 44.63 000 44.62 Optimized 44.61 44.6 10.86 10.88 10.9 10.92 10.94 10.96 10.98 11 11.02 11.04 11.06
- Use of geo-referenced data:
 - Traffic/Air pollution monitoring in Modena
- Scenario Comparison
 - Naive model
 - Optimized model
- Representation of sensor → fog mapping
- Uneven distribution of sensors over fog nodes


Longitude

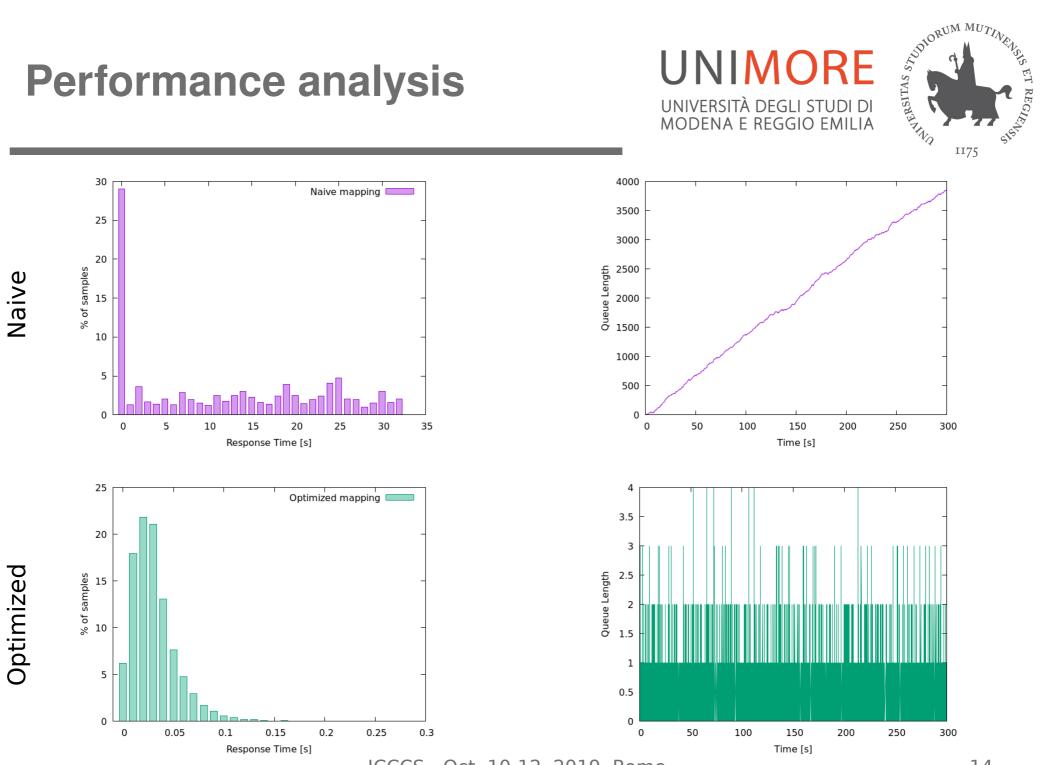
Simulations

- Scenario:
 - Delay: $\delta \mu = 10$ ms
 - Net/Proc: $\delta \mu = 1$
 - Load: $\rho = 0.5$
- Creation of simulation
 - Leverage OMNeT++ GUI
 - Built-in analysis tools

1175

Performance analysis

Fog

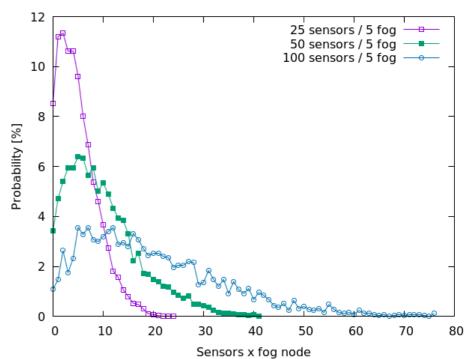

Cloud

Parameter	Naive Mappping	Optimized mapping
Utilization	0.30, <mark>~1</mark> , 0.075	0.54, 0.53, 0.45
Queue length	0.07, >1987 , 0.0031	0.33, 0.32, 0.19
Queuing time [ms]	2.2, >17650 , 0.41	6.0, 5.9, 4.1
Response time [ms]	>12807	30.8
Queuing time [ms]	>12786	5.4
Processing time [ms]	10	10

- Preliminary performance comparison
 - Evidence of overload in a fog node for naive mapping
 - No performance degradation when connections are optimized

UNIMORE

Performance analysis


ICCCS - Oct. 10-12, 2019, Rome

Another example

- Focus on naive mapping
- Given #sensors, #fog
 - Sensors for each fog node?
 - Probability distribution
- Analysis:
 - Estimate risk of congestion
 - Create realistic
 heterogeneous scenarios
 → for load sharing
- Just another script
 - Create topology
 - Collect data

- Observation:
 - Distribution: truncated Gaussian
 - Mean and variance can be quantified

PAFFI is available now!

Find it in my homepage: http://web.ing.unimo.it/rlancellotti/

Or send me an email: riccardo.lancellotti@unimore.it

ICCCS - Oct. 10-12, 2019, Rome