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Abstract Cloud computing has recently emerged as a leading paradigm to allow customers to run their ap-

plications in virtualized large scale data centers. Existing solutions for monitoring and management of these

infrastructures consider Virtual Machines (VMs) as independent entities with their own characteristics. However,

these approaches suffer from scalability issues due to the increasing number of VMs in modern cloud data centers.

We claim that scalability issues can be addressed by leveraging the similarity among VMs behavior in terms of re-

source usage patterns. In this paper we propose an automated methodology to cluster VMs starting from the usage

of multiple resources, assuming no knowledge of the services executed on them. The innovative contribution of

the proposed methodology is the use of the statistical technique known as Principal Component Analysis (PCA) to

automatically select the most relevant information to cluster similar VMs. We apply the methodology to two case

studies, a virtualized testbed and a real enterprise data center. In both case studies, the automatic data selection

based on PCA allows us to achieve high performance, with a percentage of correctly clustered VM between 80%

and 100% even for short time series (1 day) of monitored data. Furthermore, we estimate the potential reduction

in the amount of collected data to demonstrate how our proposal may address the scalability issues related to

monitoring and management in cloud computing data centers.
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1 Introduction

In the last few years the widespread adoption

of virtualization techniques and service-oriented

architectures have led to the popularity of the

cloud computing paradigm. In the Infrastructure

as a Service (IaaS) perspective, cloud providers al-

low customers to run their applications in modern

virtualized cloud data centers. Customer applica-

tions typically consist of different software com-

ponents (e.g., the tiers of a multi-tier Web appli-

cation) with complex and heterogeneous resource

demand behavior. In a virtualized cloud data cen-

ter, multiple independent virtual machines (VMs)

are jointly hosted on physical servers, and each

VM runs a specific software component of a cus-

tomer application.

Due to the rapid increase in size and com-

plexity of cloud data centers, the process of mon-

itoring these systems to support resource manage-

ment (e.g., periodic VMs consolidation) is becom-

ing a challenge from a scalability point of view.

We should also consider that providers of IaaS

cloud infrastructures do not have direct knowledge

of the application logic inside a software compo-

nent, and can only track OS-level resource utiliza-

tion on each VM [28, 32]. Hence, most monitor-

ing and management strategies consider each VM

of a cloud data center as a single object, whose

behavior is independent of the other VMs. This

approach exacerbates the scalability issues related

to the monitoring of cloud data centers due to

the amount of data to collect and store when a

large number of VMs is considered, each with

several resources monitored at high sampling fre-

quency [4].

Existing monitoring solutions for IaaS cloud

data centers tend to address scalability issues by

reducing the number of VM resources that are

taken into account, typically considering only

CPU- or memory-related information [5, 6, 15,

22, 29]. However, these approaches are likely to

suffer important drawbacks, because limiting the

monitoring to CPU or memory resources may not

be sufficient to efficiently support VMs consoli-

dation strategies that cope with I/O bound or net-

work bound applications.

We claim that the scalability of monitoring in

cloud infrastructures may be improved by leverag-

ing the similarity between VMs behavior, consid-

ering VMs not as single objects but as members of

classes of VMs running the same software com-

ponent (e.g., Web server or DBMS of the same

customer application). In particular, we refer to

a cloud scenario characterized by long-term com-

mitments, that is, we focus on customers that out-

source their data centers to a cloud provider pur-

chasing VMs for extended periods of time (for ex-

ample, using the Amazon so-called reserved in-

¬Amazon EC2 Reserved Instances, http://aws.amazon.com/ec2/reserved-instances/, June 2013
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stances¬). This scenario is and is expected to

be a significant part of the cloud ecosystem [13].

Hence, we can assume that customer VMs change

the software component they are running with a

relatively low frequency, in the order of weeks or

months. Once identified classes of similar VMs,

we may select a few representative VMs for each

class and carry out fine-grained monitoring only

on these representatives, with a major benefit on

cloud monitoring scalability.

In this paper we propose an innovative

methodology, namely PCA-based, to automati-

cally cluster together similar VMs on the basis of

their resource usage. To the best of our knowl-

edge, the proposal of techniques for automatic

clustering of similar VMs is a new problem, only

recently analyzed in [7, 8]. The main innovation

of our proposal is the use of the Principal Compo-

nent Analysis (PCA) to automatically remove not

relevant information from the VM behavior de-

scription, providing an improvement in terms of

performance and computational costs.

We apply the proposed methodology to two

case studies: a dataset coming from an enterprise

cloud data center with VMs running Web servers

and DBMS, and a data set originated by a vir-

tualized testbed running e-business applications

with a synthetic workload. We demonstrate that

our methodology can achieve high performance

in automatic clustering even for short time series

(1 day) of monitored VM resource usage. Ex-

perimental results show that the use of the PCA-

based approach allows us to automatically select

the most relevant information for the clustering

process, thus achieving a twofold improvement

with respect to previous studies [7, 8]: first, we

obtain better and more stable clustering perfor-

mance, with a percentage of correctly classified

VMs that remains between 100% and 80% for ev-

ery considered scenario; second, we reduce the

computational cost of the VM clustering phase.

Finally, we quantify the reduction in the amount

of data collected for management support in our

enterprise cloud case study, demonstrating the po-

tential benefit for monitoring scalability.

The remainder of this paper is organized as

follows. Section 2 describes the reference sce-

nario and motivates our proposal, while Section 3

describes the methodology for automatic cluster-

ing VMs with similar behavior. Section 4 presents

the two case studies and Section 5 describes the

results of the methodology evaluation. Finally,

Section 6 discusses the related work and Section 7

concludes the paper with some final remarks.

2 Motivation and reference scenario

In a complex scenario such as a IaaS

cloud system, resource management strategies are

needed to guarantee an efficient use of the system

resources, while avoiding overload conditions on
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the physical servers. We consider a management

strategy for the cloud system which consists of

two mechanisms, as in [16]: (a) a reactive VM

relocation that exploits live VM migration when

overloaded servers are detected [32]; (b) a peri-

odic consolidation strategy that places customer

VMs on as few physical servers as possible to re-

duce the infrastructure costs and avoid expensive

resource over provisioning [5, 27].

The consolidation task is carried out periodi-

cally with the aim to produce an optimal (or nearly

optimal) VM placement which reduces the num-

ber of shared hosts. Existing consolidation de-

cision models typically try to predict VM work-

load over a planned period of time (e.g., few

hours) based on resource usage patterns observed

on past measurements, that are usually carried out

with a fine-grained granularity (e.g., 5-minute in-

tervals) [5, 27]. Since consolidation strategies

usually consider each VM as a stand-alone ob-

ject with independent resource usage patterns, de-

tailed information has to be collected with high

sampling frequency about each VM, thus creating

scalability issues for the monitoring system.

The proposed methodology aims to address

cloud monitoring scalability issues by automati-

cally clustering similar VMs. The main goal is to

cluster together VMs running the same software

component of the same customer application, and

therefore showing similar behaviors in terms of

resource usage. For each identified class, only

few representative VMs are monitored with fine-

grained granularity to collect information for the

periodic consolidation task, while the resource us-

age of the other VMs of the same class is assumed

to follow the representatives behavior. On the

other hand, the non representative VMs of each

class are monitored with coarse-grained granular-

ity to identify behavioral drifts that could deter-

mine a change of class. At the same time, sud-

den changes leading to server overload are han-

dled by the reactive VM relocation mechanism.

This approach allows us to significantly reduce the

amount of information collected for periodic con-

solidation strategies.

The process of VM clustering is carried out

periodically with a frequency sufficient to cope

with changes in the VM classes. We recall that our

reference scenario is a cloud environment charac-

terized by long-term commitment between cloud

customers and providers, where we can assume

that the software component hosted on each VM

changes with a relatively low frequency in the or-

der of weeks or months. Hence, clustering can be

carried out with a low periodicity (e.g., once ev-

ery one or few weeks). Furthermore, the cluster-

ing may be triggered when the number of excep-

tions in VMs behavior exceeds a given threshold,

where for exception we mean newly added VMs

or clustered VMs that changed their behavior with
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Fig. 1. Cloud system

respect to the class they belong to. Anyway, a pre-

cise determination of the activation period or strat-

egy of the clustering process is out of the scope of

this paper.

Figure 1 depicts the reference scenario. The

scheme represents a cloud data center where each

physical server, namely host, runs several VMs.

On each host we have an hypervisor, with a moni-

tor process that periodically collects resources us-

age time series for each VM. The collected data

are sent to the time series aggregator running on

the host. The time series aggregator selects the

data to be communicated (with different period-

icity) to the clustering engine, which executes

the proposed methodology to automatically clus-

ter VMs, and to the cloud controller, which is re-

sponsible for running the consolidation strategy.

On each host we also have a local manager, which

performs two tasks. First, it is responsible for tak-

ing decisions about live VM migration to trigger

in case of host overload [32]. Second, it executes

the consolidation decisions periodically commu-

nicated by the cloud controller.

Let us now consider the dynamics occurring

in the considered cloud system to support VM

clustering and server consolidation. The process

of VM clustering starts from the collection of

time series describing the resources usage for each

VM over a certain period of time. The moni-

tor processes are responsible for this data collec-

tion. Then, the time series aggregator of each host

sends the data to the clustering engine, which ex-

ecutes the proposed methodology with the aim to

cluster together VMs belonging to the same cus-
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tomer application and running the same software

component. Once the clustering is complete, few

representative VMs are selected for each class. It

is worth to note that more than two representatives

(at least three) should be selected for each class,

due to the possibility that a selected representa-

tive unexpectedly changes its behavior with re-

spect to its class: quorum-based techniques can be

exploited to cope with byzantine failures of repre-

sentative VMs [9].

The information on VM classes and selected

representatives are sent to the time series aggrega-

tors on each host and to the cloud controller for

periodic consolidation tasks. The time series ag-

gregators selectively collect the resource time se-

ries of the representative VMs of each class, then

send the data to the cloud controller. This latter

component carries out the consolidation task, ex-

ploiting the resource usage of the representative

VMs to characterize the behavior of every VM of

the same class. The consolidation decisions are fi-

nally communicated to the local managers on each

host to be executed.

Let us now provide a motivating example for

our proposal showing how the clustering of simi-

lar VMs may improve the scalability of the moni-

toring system. We consider a multi-tier Web appli-

cation characterized by a high degree of horizontal

replication. The application is deployed on 110

VM, divided in front-end Web servers and back-

end DBMS servers. We consider that this appli-

cation is going to be migrated from an enterprise

data center to a IaaS cloud system. This scenario

is a typical case where moving to a IaaS platform

involves long term commitments, that is the VM

are unlikely to change frequently in typology. As

the cloud provider has no knowledge on the soft-

ware component running in each VM, it is neces-

sary to monitor every VM at fine-grained granu-

larity to accomplish periodic consolidation tasks.

Assuming that monitoring considers K resources

for each VM, which are collected with a frequency

of 1 sample every 5 minutes, we have to manage a

volume of data 288 ·K samples per day per VM.

Considering 110 VMs, the total amount of data

is in the order of 32 × 103 · K samples per day.

The proposed methodology automatically identi-

fies two sets of similar VM and monitors at the

granularity of 5 minutes only a few representative

VMs per class, while the remaining VMs can be

monitored with a coarse-grained granularity, for

example of 1 sample every few hours. Assuming

to select 3 representatives for each of the 2 VM

classes the amount of data to collect after cluster-

ing is reduced to 1.7 × 103 · K samples per day

for the class representatives; for the remaining 104

VMs, assuming to collect one sample of the K

metrics every 6 hours for VM, the data collected

is in the order of 4.2 × 102 · K samples per day.

Hence, we observe that our proposal may reduce
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the amount of data collected for periodic consoli-

dation by nearly a factor of 15, from 32× 103 ·K

to 2.1× 103 ·K.

3 Methodology for automatic VMs clustering

In this section we describe the PCA-based

methodology to automatically cluster similar VMs

on the basis of their resource usage. We first

present the overview of the methodology, then we

detail the main steps. Finally, we describe the pre-

vious approach to VMs clustering presented in [8],

that will be used as a term of comparison in the

methodology performance evaluation (Section 5).

3.1 Methodology Overview

To cluster together VMs running the same

software component, the proposed methodology

has to automatically capture the similarities in

VMs behavior. To this aim, we exploit the

correlation between the usage of different VM

resources. The basic idea is that capturing

the inter-dependencies among the usage of sev-

eral resources, such as CPU utilization, network

throughput or I/O rate, allows us to describe the

VM behavior during the monitored period of time.

For example, network usage in Web servers is typ-

ically related to the CPU utilization [10], while in

the case of DBMS CPU utilization tends to change

together with storage activity [20].

A first naı̈ve approach to cluster VMs based

on correlation of resource usage has been pro-

posed in [7, 8]. Considering only CPU and mem-

ory resources, as typically done by resource man-

agement strategies in cloud data centers, leads

to poor performance in automatic VMs cluster-

ing [7]. However, the high dimensional data set

consisting of multiple resources usage informa-

tion may contain data which are not relevant for

VM clustering and may have a twofold negative

effect on methodology performance. First, clus-

tering algorithms typically have a computational

complexity that grows with the size of the input

feature vector describing each VM. Second, not

relevant information may be detrimental for the

clustering performance, because it may introduce

elements that hinder the capability of the cluster-

ing algorithm to correctly classify similar VMs.

For this reason, we need an automatic mechanism

to discriminate between relevant and less relevant

information in the description of VMs behavior.

We consider variance as a main statistical

property that quantifies the relevance of a resource

in the overall system behavior, as in [25]. In liter-

ature, there are several algorithms to reduce the

dimensionality of a high dimensional and hetero-

geneous data set, such as Independent Compo-

nent Analysis (ICA) [18], Correspondence Anal-

ysis [17], Factor Analysis [24]. To automati-

cally select the most relevant information in terms

of variance, we exploit the statistical technique
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of Principal Component Analysis (PCA) [1], be-

cause it is able to express the intrinsic structure of

a data set in terms of variance without requiring

any prior knowledge about the statistical charac-

teristics of the initial data sets. The use of PCA

allows us to identify and retain just the most rel-

evant information, thus reducing the problem di-

mensionality and improving the performance of

the VM clustering. In the rest of this section we

describe in details the methodology main steps.

3.2 Methodology Steps

The left branch of Figure 2 outlines the main

steps of the PCA-based methodology:

• Computation of correlation matrices de-

scribing the VMs behavior

• Eigenvalue decomposition of the correlation

matrices to discriminate between relevant

and not relevant information

• Selection of principal components to elimi-

nate scarcely relevant data from the VM de-

scription

• Clustering to identify classes of similar

VMs

Fig. 2. Steps of PCA-based methodology and alterna-

tive Correlation-based approach

It is worth noting that the first two steps of

the methodology represent the core operations of

a Principal Component Analysis over the original

time series.

The right branch in Figure 2 describes the

alternative approach, namely Correlation-based,

which has been presented in a previous study [8].

In this case, the main difference is that the final

clustering step operates directly on the correlation

values among the VM metrics, after a simple re-

moval of redundancies in the VM correlation ma-

trices. We now describe in detail each step of the
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proposed PCA-based methodology and of the al-

ternative Correlation-based approach.

3.2.1 Computation of Correlation Matrices

Given a set of N VMs, we consider each VM

n,∀n ∈ [1, N ], as described by a set of M metrics,

where each metric m ∈ [1,M ] represents the us-

age of a VM resource. Let (Xn
1 ,X

n
2 , . . . ,X

n
M) be

a set of time series, where Xn
m is the vector con-

sisting of the resource usage samples represented

by the metric m of VM n.

Before computing the correlation between

metric time series, we should consider the pres-

ence of periods where the VMs are in an idle state:

during idle periods, the correlation between the

metrics is not meaningful to describe the VM be-

havior and, consequently, may lead to a wrong fi-

nal clustering, as we will demonstrate in the exper-

imental evaluation (Section 5.1.2). Moreover, the

presence of idle periods is likely to have the worst

effects for short time series, where they may rep-

resent a significant portion of the monitored data.

To avoid this issue, it could be necessary to apply

a filtering technique to eliminate the idle periods

from the VM metric time series. Specifically, we

consider that a VM is in an idle period when its

CPU usage is below a given threshold for a spe-

cific time window.
After data filtering, we compute the cor-

relation to capture the inter-dependencies be-
tween VM metrics. For each VM n we com-

pute a correlation matrix Sn, where snm1,m2
=

corr(Xn
m1

,Xn
m2

) is the correlation coefficient of
the filtered time series Xn

m1
and Xn

m2
of metrics

m1 and m2, respectively. We choose the Pearson
product-moment correlation coefficient (PPMCC)
to measure the correlation between pairs of time
series defined as:

snm1,m2
=

X∑
i=1

(xn
m1

(i)− x̄n
m1

)(xn
m2

(i)− x̄n
m2

)√
X∑
i=1

(xn
m1

(i)− x̄n
m1

)2

√
X∑
i=1

(xn
m2

(i)− x̄n
m2

)2

where X is the length of the metric time series

(X = |Xn
m|, ∀m ∈ [1,M ],∀n ∈ [1, N ]), while

xn
m(i) and x̄n

m are the i-th element and the average

value of the time series Xn
m, respectively.

Finally, the correlation matrices are given as

input to the second step of the methodology.

3.2.2 Eigenvalue Decomposition

This step applies an eigenvalue decomposi-

tion to the VM correlation matrices. This oper-

ation results in a PCA coordinate transformation

that maps the initial data set, that is the M time se-

ries, on a new coordinate system of M axes, which

are called principal components. For each correla-

tion matrix Sn of a VM n, we compute the matrix

En of eigenvectors as:

(En)−1SnEn = Dn

where Dn is the diagonal matrix of the eigen-

values of Sn. Matrix En has dimension M x M
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and contains M column vectors, each of length

M , representing the M eigenvectors of the corre-

lation matrix Sn. Each eigenvector is associated

to a principal component and to an eigenvalue,

which represents the magnitude of variance along

the corresponding principal component.

3.2.3 Selection of Principal Components

By convention, eigenvalues are sorted from

large to small according to their contribution to

the overall variance. We exploit these values to

discriminate between relevant information, repre-

sented by the principal components associated to

large eigenvalues, from less relevant information,

corresponding to the least important components

in terms of variance. Several methods exist [1] to

choose the number H of principal components to

retain, ranging to the Kaiser criterion, that takes

into account the eigenvalue related to the compo-

nents, to graphical approaches as the scree plot,

which is based on the percentage of variance ex-

pressed by each component. We exploit the scree

plot method, which is widely used for its relia-

bility and easy interpretation. It is worth noting

that typically we have H � M , thus allowing us

to significantly reduce the dimensionality of the

problem.

After selecting the H principal components

to retain, we build for each VM n the correspond-

ing feature vector V n, which is given as input to

the final clustering step. The feature vector V n

consists of the first H eigenvectors of the matrix

En. Figure 3 provides an example of creation of

the feature vector V n from the eigenvector matrix

En in the case H = 2.

Fig. 3. Creation of VM feature vector for the PCA-

based approach

3.2.4 Clustering of Virtual Machines

The feature vector V n is used by the cluster-

ing algorithm as the coordinate of VM n in the

feature space. We define C as the vector resulting

from the clustering operation. The n-th element of

vector C, cn, is the number of the cluster to which

VM n is assigned. Many algorithms exist for clus-

tering, starting from the widespread k-means to

more complex kernel-based solutions, up to clus-

tering based on spectral analysis [19, 14]. We

choose to adopt one of the most popular solutions,

that is the k-means clustering algorithm [19]. It

is worth noting that the execution of the k-means
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algorithm starts from the selection of a random set

of centroids. To ensure that the k-means cluster-

ing solution is not affected by local minimums, we

iterate the k-means multiple times. Finally, we

select as clustering output C the best clustering

solution across multiple k-means runs, which is

the solution that maximizes inter-cluster distances

and minimizes intra-cluster distances [19].

Once the clustering is complete, we select

few representative VMs for each class to the pur-

pose of simplifying the monitoring task. Cluster-

ing algorithms such as k-means provide as addi-

tional output the coordinates of the centroids for

each identified class. In our scenario, the repre-

sentative VMs can be selected as the VMs closest

to the centroids.

3.3 Alternative Correlation-based Approach

The right branch of Figure 2 represents the

Correlation-based approach for VM clustering

proposed in [8]. In this naı̈ve approach, the prob-

lem dimensionality is reduced simply by remov-

ing the redundancy implicit in the correlation ma-

trices. Specifically, the redundancy is caused by

the symmetric nature of the correlation matrices,

which have the main diagonal consisting of “1”

values. We build the feature vector V n using the

elements of the lower triangular sub-matrix; the

feature vector is defined as:

V n = (sn2,1, s
n
3,1, s

n
3,2, . . . , s

n
M,1, . . . , s

n
M,M−1)

Figure 4 provides an example of creation of

the feature vector from the correlation matrix in

the case M = 4.

Fig. 4. Creation of VM feature vector for the

Correlation-based approach

Then, the feature vector V n is fed into the fi-

nal clustering step. Also in this case, we use the

k-means algorithm for the clustering step, which

produces the final solution C of the alternative ap-

proach.

4 Case studies

To evaluate the performance of the proposed

methodology we consider two case studies: (a)

a dataset coming from a virtualized testbed host-

ing typical e-business applications with synthetic

workload; (b) a real dataset coming from an enter-

prise data center hosting Web-based applications.

Let us describe in details the two case studies.
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4.1 EC2 Amazon case study

The first case study, namely EC2 Amazon,

is based on a dataset coming from a virtualized

testbed running a Web-based e-commerce appli-

cation. The considered application, based on the

TPC-W benchmark, is specifically built to eval-

uate the PCA-based methodology and is deployed

over the Amazon Elastic Computing infrastruc-

ture. The application uses a java-based application

server, a DBMS and a set of emulated browser,

issuing both HTTP and HTTPS requests. The

benchmark is hosted on a set of 36 VMs (we

use the micro instances of VM provided by Ama-

zon EC2), with 12 VMs dedicated to emulated

browsers, 12 to Web servers and 12 to DBMS.

The monitoring system periodically collects sam-

ples about the VM resource usage. Each sample

provides an average value computed over the pe-

riod between subsequent samplings. In this sce-

nario, the virtualized infrastructure is monitored

through a framework explicitly designed for cloud

platforms [3]. The complete list of the metrics col-

lected by the monitoring system is provided in Ta-

ble 1 along with a short description.

Table 1. VM metrics for EC2 Amazon case study
Metric Description

X1 BlockOut Rate of blocks written to storage

[Blk/s]

X2 CtxSwitch Rate of context switches [Cs/s]

X3 CPUIdle CPU idle time [%]

X4 CPUSystem CPU utilization (syst. mode) [%]

X5 CPUUser CPU utilization (user mode) [%]

X6 CPWait CPU waiting time [%]

X7 Interrupts Rate of interrupts [Int/s]

X8 MemBuff Size of filesystem in memory

(Read/Write access) [MB]

X9 MemCache Size of filesystem in memory

(Read only access) [MB]

X10 MemFree Size of free memory [MB]

X11 NetRxBs Rate of network incoming bytes

[B/s]

X12 NetRxPkts Rate of network incoming pack-

ets [Pkts/s]

X13 NetTxBs Rate of network outgoing bytes

[B/s]

X14 NetTxPkts Rate of network outgoing pack-

ets [Pkts/s]

X15 ProcRun Number of running processes

As the considered application is supporting a

synthetic workload, the patterns of client requests

are stable over time without the typical daily pat-

terns that characterize Web traffic. For this reason,

we collect samples only for 1 day: longer time

series would not provide additional information

from a statistical point of view in this steady state

scenario. On the other hand, having a complete

TPC-W, http://www.tpc.org/tpcw/, June 2013
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control on the monitoring infrastructure allows us

to change the sampling frequency for the metrics

of each VM. Specifically, we consider sampling

frequencies ranging from 1 to 5 minutes.

4.2 Enterprise data center case study

The second case study, namely Enterprise

data center, is based on a dataset coming from

an enterprise data center hosting one customer

Web-based application for e-health deployed ac-

cording to a multi-tier architecture. The applica-

tion is composed of a front-end tier, that hosts the

J2EE application implementing the presentation

and business logic, and a back-end, that is a set

of partitioned and replicated databases on an Or-

acle DBMS. The application is accessed by a few

thousands of users, both private citizens and hos-

pital operators, with the typical daily usage pat-

terns characterized by high resource utilization in

the office hours and lower utilization during the

night. The data center is composed of 10 nodes on

a Blade-based system (ProLiant BL460c blades).

Each blade is equipped with two 3GHz quad-core

CPUs, and each blade hosts 64 GB of RAM. The

data center exploits virtualization to support the

Web application. The blades host 110 VMs that

are divided between Web servers and back-end

servers (that are DBMS).

Data about the resource usage of every VM

are collected for different periods of time, rang-

ing from 1 to 120 days. The samples are collected

with a frequency of 5 minutes, considering aver-

age values over the sampling period. For each VM

we consider 11 metrics describing the usage of

several resources including CPU, memory, disk,

and network. The complete list of the metrics is

provided in Table 2 along with a short description.

Table 2. VM metrics for Enterprise data center case
Metric Description

X1 SysCallRate Rate of system calls [req/sec]

X2 CPU CPU utilization [%]

X3 DiskAvl Available disk space [%]

X4 CacheMiss Cache miss [%]

X5 Memory Global memory utilization [%]

X6 UserMem User-space memory util. [%]

X7 SysMem System-space memory util. [%]

X8 PgOutRate Rate of memory pages swap-out

[pages/sec]

X9 InPktRate Rate of network incoming pack-

ets [pkts/sec]

X10 OutPktRate Rate of network outgoing pack-

ets [pkts/sec]

X11 ActiveProc Number of active processes

4.3 Methodology Application

Let us now describe the application of the

proposed methodology to the considered case

studies. For the EC2 Amazon case study, the final

goal of our methodology is to cluster the VMs in

three classes: Web servers, DBMS and emulated

browsers. We also consider the emulated browsers

to increase the number of VMs classes that are
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taken into account. For the Enterprise data cen-

ter case study, we aim to cluster the VMs in two

classes: Web servers and DBMS servers.

It is worth noting that for the EC2 Amazon

case study we don’t need to apply a filter to the

monitored data, because we have short time series

of a single day not containing idle periods. On

the other hand, in the Enterprise data center case

study we have to apply a preliminary step of data

filtering because we have idle periods in the mon-

itored time series. For this scenario, we remove

from the original data the sequences of samples

where the CPU utilization is below 10% [12, 31]

for periods of at least 4 consecutive hours. Then,

the methodology computes a correlation matrix

for each VM. An eigenvalue decomposition is car-

ried out on the correlation matrices to identify the

principal components of the data set and discrim-

inate between relevant and less relevant informa-

tion. To reduce the dimensionality of the problem,

we select the principal components associated to

the highest eigenvalues. To this aim, we exploit

the visual method of the scree plot, which is based

on the components percentage of variance. We

compute and sort the percentages of variance in

decreasing order to separate the most important

components, characterized by high variance, from

the least important ones, characterized by low val-

ues. The analysis carried out on both case studies

shows that we can consider just the first principal

component (H = 1), while discarding the other

ones. The scree plot for one VM belonging to the

first case study is shown in Figure 5 as an exam-

ple of the variance behavior in our data sets: we

see that a sharp “elbow” is clearly visible in the

graph. This allows us to select the most relevant

information included in the first principal com-

ponent, which contributes for almost the 70% of

variance, while discarding the other not-relevant

components, which contribute to the overall vari-

ance of the data set for less than 10% each.
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Fig. 5. Scree plot

As discussed in Section 3, the first eigenvec-

tor corresponding to the selected principal com-

ponent is used to build the feature vector describ-

ing VMs behavior. Then, the feature vectors are

given as input to the last step of the methodology,

which uses the k-means algorithm to cluster sim-

ilar VMs. As the k-means algorithm starts each

run with a set of randomly-generated cluster cen-

troids, we run the final clustering 103 times, then
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we select the best clustering solution. Finally, we

compare the output of the clustering step with the

ground truth, represented by the correct classifi-

cation of VMs, to evaluate the clustering results.

To evaluate the performance of the methodology,

we aim to measure the fraction of VMs which are

correctly identified by the clustering. To this pur-

pose, we consider the clustering purity [2], that is

one of the most popular measures for clustering

evaluation. The clustering purity is obtained by

comparing the clustering solution C with the vec-

tor C∗, which represents the ground truth. Purity

is thus defined as:

purity =
|{cn : cn = cn∗,∀n ∈ [1, N ]}|

|C|

where |{cn : cn = cn∗,∀n ∈ [1, N ]}| is the

number of VMs correctly clustered and |C| = N

is the number of VMs.

5 Experimental results

In this section we present the results of a

set of experiments to evaluate the proposed PCA-

based methodology in different scenarios. We

first evaluate the performance of the PCA-based

methodology applied to the case studies described

in Section 4, and compare the results with those

obtained through the Correlation-based approach.

Then, we analyze the computational cost of the

methodology for varying number of VMs and con-

sidered metrics. Finally, we perform a sensitivity

analysis to evaluate how the clustering purity is in-

fluenced by the number of selected principal com-

ponents and by the number of VMs to cluster.

5.1 Performance evaluation

We now compare the PCA-based and the

Correlation-based approaches for the two consid-

ered case studies.

5.1.1 EC2 Amazon case study

The EC2 Amazon case study represents a

data set obtained in a controlled and reproducible

environment with a limited number of VMs that

are monitored for 24 hours at different sampling

frequencies (from 1 to 5 minutes). We exploit

this case study for a twofold purpose: to have a

first comparison of PCA-based and Correlation-

based approaches, and to investigate how the fre-

quency of metric sampling may affect the perfor-

mance of VM clustering. As for the latter goal,

we should consider the potential trade-off related

to the choice of the metric sampling frequency: a

fine-grained monitoring of the considered metric

is likely to produce a detailed and precise repre-

sentation of the VM behavior, which could im-

prove the performance of the clustering; on the

other hand, a coarse-grained monitoring reduces

the amount of data collected for metric sampling,

thus reducing the scalability issues of the monitor-
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ing system. Hence, it is interesting to investigate

how a different granularity of the resource mon-

itoring affects the performance of the proposed

methodology.

Figure 6 shows the clustering purity of PCA-

based and Correlation-based approaches for dif-

ferent sampling frequencies ranging from 1 to 5

minutes. We observe that the proposed PCA-

based methodology correctly identifies a high per-

centage of VMs (ranging from 88% to 94%), and

outperforms the Correlation-based approach for

every sampling frequency, thus giving us a first

confirmation that the automatic selection of the in-

formation to feed into the clustering algorithm has

a positive effect on the methodology performance.
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Fig. 6. Clustering purity for different sampling fre-

quencies

If we focus on the impact of the sampling fre-

quency, we note that the difference in the cluster-

ing purity grows as the frequency decreases, with

a gap ranging from 0.02 up to 0.13 for the low-

est considered frequency (5 minutes). We can de-

duce that the Correlation-based approach is sig-

nificantly more sensible to the granularity of the

monitoring sampling, while the performance of

the proposed methodology is stable for different

sampling frequencies. This represents an impor-

tant result for the applicability of our methodol-

ogy to large-scale cloud data centers for a twofold

reason: first, the stability of the results allows to

avoid high sampling frequencies that would in-

crease the amount of the collected data and worsen

the scalability issues of the monitoring systems;

second, the methodology is compatible with ex-

isting monitoring systems of cloud data centers,

which usually exploit a sampling frequency of 5

minutes to monitor VM resources.

5.1.2 Enterprise data center case study

Now we consider the Enterprise data center

case study, which represents a real data set where

VMs are monitored at a sampling frequency of

5 minutes. In this case, we aim to evaluate

the clustering performance of the PCA-based and

Correlation-based approaches as a function of the

length of the metric time series. Specifically, we

consider time series ranging from 1 to 120 days.

First we apply the two clustering approaches with-

out carrying out the preliminary filtering of idle

periods on the metric time series.
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The histogram in Figure 7 presents the clus-

tering purity for this experiment. We observe that

for every time series length the proposed PCA-

based methodology equals or exceeds the purity

achieved by the Correlation-based approach. This

result confirms, also in a real scenario, the superi-

ority of the proposed methodology with respect to

a naı̈ve approach, which directly exploits the cor-

relation values between pairs of metrics for VMs

clustering.

Considering the clustering purity as a func-

tion of time series length, we observe that for very

long time series the clustering is perfect, that is ev-

ery Web server and every DBMS is correctly iden-

tified. On the other hand, the purity significantly

decreases as we reduce the monitoring period. In

particular, when the length of the time series is be-

low 20 days, the purity is below 0.7, reaching 0.65

for a time series of only 5 days. The significant

purity reduction for short time series is due to the

presence of idle periods in the data. Indeed, we

found that some VMs present a bimodal behav-

ior, with periods of time where the VM is mostly

idle (CPU utilization below 10%) mixed with pe-

riods where the VM is heavily utilized. In par-

ticular, for very short time series (1-5 days) some

VMs are characterized almost exclusively by idle

periods. During the idle periods, the correlation

between the metrics describing the VM is altered,

thus leading to a wrong clustering which explains

the poor performance of both approaches.

To avoid this effect, we apply the prelimi-

nary filtering of the metric time series to extract

a sequence of samples not containing idle periods,

as described in Section 4. Figure 8 compares the

results of PCA-based and Correlation-based ap-

proaches applied to short time series (from 1 to

15 days) of filtered and not filtered data.

Fig. 8. Impact of idle data filtering for short time series

As expected, filtering idle periods from the
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monitored data significantly improves the perfor-

mance of the VM clustering for both approaches.

However, the PCA-based methodology is con-

firmed to outperform Correlation-based approach.

The gain achieved by the proposed methodology

ranges from 3% to 19% with respect to the pu-

rity obtained by the Correlation-based approach,

reaching higher gains for shorter time series (1 and

2 days). Moreover, the purity never drops below

0.8 even for the shortest considered time series.

It is worth noting that the capability of the pro-

posed methodology to achieve good performance

for short time series allows us to reduce the pe-

riod of time during which we need to monitor VM

resources before applying clustering.

Figure 9 explains why the PCA-based ap-

proach outperforms the alternative. The graph

shows the scatter plots of the distances separating

each VM from the centroids of the two clusters

(Web servers and DBMS) in the case of time se-

ries of 1 day. Web servers are represented by cir-

cles, while DBMSes correspond to crosses. The

x-axis measures the distance from the centroid of

the DBMS cluster (represented by the cross on the

y-axis), while on the y-axis we have the distances

from the centroid of Web servers cluster (repre-

sented by the circle on the x-axis). The distance

is computed using the multi-dimensional feature

vectors describing the VMs. Figure 9(a) refers to

the PCA-based methodology, while Figure 9(b)

represents the Correlation-based approach. In

both graphs we draw the bisector line that iden-

tifies points that are equidistant from the two cen-

troids. All the points above the bisector line are

classified as belonging to the DBMS cluster, while

every point below the line is associated to the Web

servers cluster.

Figure 9 clearly shows that the PCA-based

approach is more effective in discriminating be-

tween the two classes of VMs. In Figure 9(a) the

points are spread on a wider area, while in Fig-

ure 9(b) they are located closer to the bisector line.

This means that the feature vectors computed with

the PCA-based methodology can better capture

and express the differences in behavior between

VMs belonging to different clusters, thus facilitat-

ing the clustering task and improving the overall

performance. It is worth noting that such advan-

tage of the PCA-based approach is more evident

with very short time series, as in the considered

case where the time series length is equal to 1 day.

5.2 Methodology computational cost

Even if clustering is carried out with a low

frequency, compared to other monitoring and

management operations, it is worth investigat-

ing the computational costs of VM clustering.

In particular, we evaluate to which extent the

PCA-based methodology may reduce the execu-

tion time of the clustering step with respect to the
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Fig. 9. VMs distances from cluster centroids

Correlation-based approach. We focus on the final

clustering phase because every previous step of

the methodology can be distributed over different

nodes of the infrastructure: for example, we can

consider to generate the feature vectors of each

VM directly at the level of the time series aggrega-

tor on each host. On the other hand, clustering is

more difficult to parallelize and its computational

cost may affect the scalability of the methodology.

The computational cost of the clustering step de-

pends on two main elements: the number of con-

sidered metrics, which determines the length of

the feature vectors given in input to the clustering

algorithm, and the number of VMs to cluster. As

pointed out in Section 3, the feature vectors gen-

erated by the proposed PCA-based methodology

to describe VMs behavior are shorter than those

computed through the Correlation-based approach

for the same number of considered metrics. To

evaluate the reduction of the computational cost,

we exploit the Enterprise data center case study; in

particular, we consider a number of VMs equal to

50 and 110, and metric time series of 15 days. Fig-

ure 10 shows the execution times of the clustering

step as a function of the number of metrics, rang-

ing from 2 to 11, for PCA-based and Correlation-

based approaches.
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The graph clearly shows the different trends

of the clustering execution time for the two ap-

proaches. In the case of PCA-based methodol-

ogy we observe a linear growth of the time re-

quired for clustering as the number of metrics in-

creases, while for the Correlation-based alterna-

tive the growth of clustering time is super-linear.

This result is consistent with the theoretic compu-

tational complexity of the k-means algorithm [23],

which is in the order O(IKNV ), where I is the

number of iteration of the k-means clustering, K

is the number of clusters, N is the number of

VMs, and V is the length of the feature vector

used to describe each VM. In the PCA-based case,

V = M · H , with H = 1 because we con-

sider for the feature vector only the principal com-

ponent associated to the first eigenvector of the

VM correlation matrix. For this reason, the de-

pendency between clustering time and number of

metrics is linear. On the other hand, in the case of

Correlation-based approach the length of the fea-

ture vector V corresponds to the size of the lower

triangular sub-matrix of the VM correlation ma-

trix (V = M2−M
2

); hence, V has a quadratic de-

pendence on the number of metrics M , thus ex-

plaining the super-linear growth of the clustering

time with respect to M .

From Figure 10, we also observe that the dif-

ference in clustering execution times grows as the

number of metrics increases, with a reduction for

the PCA-based approach of 39% and 41% with

respect to the Correlation-based approach for 50

and 110 VMs, respectively. The graph shows just

one exception for the case of 2 metrics, where

the Correlation-based clustering is faster than the

PCA-based. This can be explained by consid-

ering that in this case the feature vector in the

Correlation-based approach consists of just one el-

ement (the correlation coefficient between the 2

considered metrics).

5.3 Sensitivity Analysis

Now we investigate the sensitivity of the

PCA-based methodology to (a) the number of

principal components selected to build the feature

vectors and (b) to the number of VMs to cluster.

The sensitivity analyses are based on the Enter-

prise data center case study.

5.3.1 Impact of principal components selection

The computational cost of the methodology

is proved to be significantly reduced with respect

to the Correlation-based approach thanks to the

choice of selecting just the first principal compo-

nent to build the VM feature vectors. Hence, it

is important to evaluate how the performance is

affected by the number of principal components

considered. We select a number of principal com-

ponents ranging from 1 to 10 to build the VM

feature vectors. Figure 11 shows the results of
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the PCA-based methodology for short time series

lengths of 1, 3, 5 and 10 days.
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Fig. 11. Clustering purity for increasing number of se-

lected principal components

We observe that the clustering purity does

not increase as the number of principal compo-

nents grows, but remains rather stable for almost

all the considered time series lengths, with a more

marked decrease for time series of 10 days. Fig-

ure 11 confirms that the first principal component,

which is the most relevant component in terms

of contribution to the overall variance of the data

set, is sufficient to characterize the VM behavior

for our purpose of clustering (as indicated by the

scree plot in Section 4). Adding more principal

components does not add any relevant informa-

tion: the data introduced into the feature vector

by the additional components represent just back-

ground noise. In most cases this noise contribu-

tion just scatters evenly the VMs over the newly

added dimensions and does not affect the outcome

of the clustering process. We present also a case

(for the time series of 10 days) where the noise

component determines a different clustering out-

come, thus hindering the quality of the methodol-

ogy results.

5.3.2 Impact of virtual machine number

The last sensitivity analysis concerns the

evaluation of the methodology performance for

different numbers of VMs to cluster. This analy-

sis is critical to demonstrate that the proposed ap-

proach can provide stable clustering performance

even for large scale cloud data centers where each

customer may acquire large sets of VMs to run his

applications.

We evaluate the clustering purity for differ-

ent time series lengths and number of VMs. Ta-

ble 3 shows how the clustering purity changes as

the number of VMs grows from 20 to 110, consid-

ering time series with length of 1, 5, and 10 days.

We observe that the clustering purity is

mostly unaffected by the number of elements to

cluster. We consider the stability of the clustering

performance very important because it means that

the proposed methodology is a viable option in the

case of large data centers.
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Table 3. Impact on purity of VM number

Time series length

Number of VMs 10 days 5 days 1 day

20 0.86 0.85 0.82

30 0.84 0.86 0.81

40 0.85 0.86 0.82

50 0.84 0.86 0.80

60 0.85 0.84 0.80

70 0.84 0.85 0.81

80 0.85 0.85 0.80

90 0.84 0.86 0.80

100 0.85 0.85 0.81

110 0.84 0.83 0.80

5.4 Summary of results

The experimental results can be summarized

as follows:

• The proposed PCA-based methodology out-

performs the Correlation-based approach in

both the case studies, achieving good clus-

tering purity even for very short time se-

ries of only 1 day (94% for the EC2 Ama-

zon and 80% for the Enterprise data cen-

ter case studies), as shown in Section 5.1.1

and 5.1.2.

• The performance of the PCA-based

methodology remains stable for sampling

frequencies ranging from 1 to 5 minutes.

Good performance is achieved for 5 minutes

sampling frequency, that is commonly used

in data centers monitoring systems (Sec-

tion 5.1.1).

• The computational cost of VM clustering

shows a linear dependency on the number

of metrics against the quadratic trend of

the Correlation-based approach. Hence, the

clustering of the PCA-based methodology

provides good scalability especially when

a large number of metrics is used (Sec-

tion 5.2).

• The automatic selection of principal compo-

nents can reduce the problem dimensional-

ity by identifying the most relevant informa-

tion; in our case studies, considering more

than one principal component does not

improve the clustering performance (Sec-

tion 5.3.1).

• The performance of the automatic VM clus-

tering is stable with respect to varying num-

ber of VMs to cluster, thus confirming the

viability of the proposed methodology even

for large data centers (Section 5.3.2).

6 Related Work

The research activities related to the scalabil-

ity issues in cloud data centers concern two main

topics that are strictly correlated: resource man-

agement and infrastructure monitoring.
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Resource management strategies in large vir-

tualized data centers can be divided in two cate-

gories: reactive on-demand solutions that can be

used to avoid and mitigate server overload condi-

tions, and periodic solutions that aim to consoli-

date VMs through optimization algorithms. The

two approaches can be combined together [16].

Examples of reactive solutions are [6] and [15],

that propose a mechanism based on adaptive

thresholds regarding CPU utilization values. A

similar approach is described also in Wood et

al. [32] with a rule-based approach for live VM

migration that defines threshold levels about the

usage of few specific physical server resources,

such as CPU-demand, memory allocation, and

network bandwidth usage. We believe that this

type of solution can be integrated in our proposal

at the local manager level. On the other hand, an

example of periodic VM consolidation solutions is

proposed by Kusic et al. in [21], where VM con-

solidation is achieved through a sequential opti-

mization approach. Similar solutions are proposed

in [5, 29]. However, these approaches are likely

to suffer from scalability issues in large scale dis-

tributed systems due to the amount of information

needed by the optimization problem. Solutions

like our proposal, aiming to reduce the amount of

data to collect and consider for the management

of cloud data centers, may play a major role to im-

prove the scalability of consolidation strategies for

cloud systems. The first proposal to address scala-

bility issues in monitoring through VM clustering

was proposed in [7, 8]. These studies exploited

the correlation of VMs resources usage to identify

similar behavior among VMs. However, these so-

lutions suffer from some drawbacks: the cluster-

ing performance decreases rapidly for short met-

ric time series as well as in presence of time peri-

ods, even short, during which VMs are idle. This

paper represents a clear step ahead with respect

to the previous studies: the proposed methodol-

ogy based on Principal Component Analysis can

achieve better and more stable results with respect

to the correlation-based approach in different sce-

narios. Moreover, improvements of the compu-

tational cost are obtained thanks to the automatic

selection and reduction of the information fed into

the clustering algorithm.

As for the issue of monitoring large data

centers, current solutions typically exploit frame-

works for periodic collection of system status in-

dicators, such as Cacti®, Munin¯ and Ganglia°.

Cacti is an aggregator of data transferred through

SNMP protocol, while Munin is a monitoring sys-

tem based on a proprietary local agent interacting

with a central data collector. Both these solutions

®Cacti, the complete rrdtool-based graphing solution, http://www.cacti.net/, June 2013
¯Munin, http://munin-monitoring.org/, June 2013
°Ganglia monitoring system, http://ganglia.sourceforge.net/, June 2013
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are typically oriented to medium to small data cen-

ters because of their centralized architecture that

limits the overall scalability of the data collection

process. Ganglia provides a significant advantage

over the previous solutions as it supports a hierar-

chical architecture of data aggregators that can im-

prove the scalability of data collection and mon-

itoring process. As a result, Ganglia is widely

used to monitor large data centers [11, 26], even

in cloud infrastructures [30], by storing resource

usage time series describing the behavior of nodes

and virtual machines. Another solution for scal-

able monitoring is proposed in [4], where data

analysis based on the map-reduce paradigm is dis-

tributed over the levels of a hierarchical architec-

ture to allow only the most significant information

to be processed at the root nodes. However, all

these solutions share the same limitation of con-

sidering each monitored node independent of the

others. This approach fails to take advantage from

the similarities of objects sharing the same behav-

ior. On the other hand, a class-based management

allows the system to perform a fine-grained moni-

toring for only a subset of nodes that are represen-

tative of a class, while other members of the same

class can be monitored at a much more coarse-

grained level. Our proposal explicitly aims to ad-

dress this problem.

7 Conclusions

The rapid increase in size and complexity of

modern cloud data centers poses major challenges

in terms of scalability for the monitoring and man-

agement of the system resources. In this paper

we propose to address scalability issues by clus-

tering VMs into classes that share similar behav-

iors, starting from their resource usage. To clus-

ter similar VMs, the proposed methodology con-

siders multiple resources, ranging from CPU to

storage and network, and exploits the statistical

technique Principal Component Analysis to auto-

matically remove not relevant information from

the VM description. The application of the pro-

posed methodology to two case studies, a virtual-

ized testbed and a real enterprise data center host-

ing multi-tier Web applications, shows that the ac-

curacy of VMs clustering ranges between 100%

and 80% for every considered scenario, includ-

ing the case of very short time series of the mon-

itored resources with length of only 1 day. It is

worth noting that the automatic selection of rel-

evant data obtained thanks to the PCA technique

leads to a twofold advantage, both in terms of per-

formance and computational cost of VM cluster-

ing, with respect to the naı̈ve Correlation-based

approach. Furthermore, we demonstrate that the

proposed methodology can reduce the amount of

collected data, thus effectively contributing to ad-

dress the scalability issues of the monitoring sys-
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tem.
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