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Abstract—Cloud computing is providing a pay-as-you-go in-
frastructure for the deployment of complex applications, with
auto-scaling support and the ability to manage and process huge
amount of data. However, due to the underlying complexity
of the cloud infrastructure, it is not trivial to evaluate the
setup providing the best performance of such scenario. To
this aim the present paper proposes a thorough performance
evaluation of a real application in a Cloud platform, measuring
the impact of several design choices and technological solution.
The experimental results, based on a real application and on
realistic data can provide a significant insight that can integrate
the traditional approach of cloud performance evaluation based
on synthetic benchmarks.

I. INTRODUCTION

Cloud computing is a major driver for the development
of modern applications. The support for elastic scaling of
the infrastructure, a nearly unlimited storage and a simple
pricing model makes the use of such infrastructure extremely
appealing.

However, the complexity of such infrastructure introduces
several options in the design phase that need to be carefully
evaluated in order to guarantee adequate performance at a
competitive price. A common approach to evaluate cloud
performance is to rely on one or multiple benchmarks [1],
[2]. However, while this methodology is suitable to measure
the performance of a IaaS cloud system, it may not always
be applicable when higher level cloud components are used,
such as in a PaaS Cloud scenario. On the other hand, different
approaches such as simulation [3], [4] aiming to evaluate the
performance of a specific function in a PaaS system may not
be able to capture interactions between multiple components
of the system.

This research is motivated by an industrial project, where
an infrastructure with elastic scaling is used to process large
amount of data. The industrial partner, Doxee, aims to support
data analytic functions in their documentation management
chains to provide value-added information to its customer.
The technological platform of Doxee is typical of several
medium IT enterprises with data analysis tools based on
relational databases. However, as data analysis functions grows
in complexity and the sheer amount of data increases, the
need to switch to more flexible and scalable technologies
arises. In most enterprises cloud-based approach is the best
option to combine the need for elasticity and scalability with
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pricing concerns. To define the reference technological stack,
several solutions must be tested to identify the best performing
alternatives for data management. This paper introduces a set
of research questions aiming to analyze the effectiveness of
platform scaling and introducing a performance/cost model
that can be used to tune the the auto-scaling parameters.

The main contribution of this paper can be summarized as:

« outlining a realistic scenario of a cloud application that
must process significant amount of data; the application is
used as the basis for developing several prototypes relying
on different technological solutions

« providing a comparison of several technological solutions
for data management in a cloud application

o providing a cost/performance model to tune the deploy-
ment parameters of the application

To the best of our knowledge the characteristics of the pro-
posed case study are novel with respect of the literature of
cloud performance evaluation.

The remaining of this paper is organized as follows. Sec. II
provides an overview of the state of the art in the area of
cloud performance evaluation. Sec. III describes the space
of alternatives explored in our performance evaluation, the
methodology used for the tests, and details the goal of our
analysis. Sec. IV presents and discusses the main experimental
results. Finally, Sec. V provides some concluding remarks.

II. RELATED WORK

The performance evaluation of Cloud-based applications is
a well-known problem dating back to the research in high
performance Web systems.

Several approaches derived from Web-based benchmarks
have been adapted to measure the performance of a Cloud-
based deployment. For example Cloud WorkBench [5] or
the Cloudstone benchmark [1], [6] have been used to this
aim. In this analysis, however, the main focus is evaluating
the performance of a system aimed to process large amount
of data rather than focusing on Web-based interactions. A
slightly different approach is to take into account a larger
set of applications, including also video streaming and object
caching [2]. However, also this approach does not fit with the
nature of the considered case study.

Another area of research where the Cloud performance
evaluation proposed several techniques is more focused on the



evaluation of database systems. For example the Yahoo! Cloud
Serving Benchmark (YCSB) [7] defines data structure and
query operations aiming to compare different technologies and
deployment schemes. However, the queries structure and data
are still focused on traditional workload models, following the
basic principles of older benchmarks [8].

A more recent approach to benchmarking is focused on
decision support systems. Several efforts have been carried out
to standardize a workload for this type of tests. Operations for
decision support include both the ingestion process of large
amount of data and its processing [9]. The TPC organization
proposed a set of standardized workload models for this
type of applications, for example in the TPC-H and TPC-
BB benchmark specifications [9], [10]. The queries in the
workload include also the support for no-SQL databases as
well as data processing based on big-data software such as
Hadoop or Spark. While this set of application is close to
the considered test case, the benchmark specification may be
difficult to integrate with PaaS technologies such as the VM
management approach of Amazon AWS. A qualifying point
of the present study is to explicitly consider a real application
on a real testbed.

A final methodology for performance evaluation is to rely
on mathematical models (e.g., based on queuing theory) [11]
or on simulation [3] to evaluate system performance. While
this approach have some merit, especially when different
architectures are to be compared, mathematical and simulator
models need to be tuned with a characterization of the real
system in order to produce accurate results. For this reason,
even when relying on these more abstract tools, a prototype-
based characterization and validation evaluation should be
carried out [4].

III. REFERENCE APPLICATION SCENARIO

The reference scenario used in this performance evalu-
ation considers a big data analysis solution that is based
on the Doxee document management software. Throughout
this section the application architecture, the main research
questions, and the technological/deployment/workload details
are discussed.

A. Application architecture

The reference application provided by Doxee follows a
classic design for big data analysis applications, with three
subsequent phases that must be carried out separately and
operate on separate but inter-dependent data.

o Ingestion: in this phase the cloud architecture is fed
with raw data coming from company’s on premise sys-
tems. Data anonymization occurs before being fed to the
prototype. This guarantees the privacy of the company
customers.

o Queries on unrefined data: this phase operates on the
previously ingested data. Different queries extract infor-
mation from the raw data and store the results in the
refined data lake.

o Queries on refined data: this phase operates smaller but
more structured datasets and performs complex queries
to extract valuable information from the data.

B. Research questions

The experiments carried out on the prototype aims to
evaluate the performance and the scalability of the considered
technologies. We can summarize the goals of the analysis with
the following main research questions:

RQ1: Can a model be defined to correlate the processing
time and the data size during the ingestion phase?
What are the benefits and the limits of using com-
pression in data storage?

Which data storage back-end provides the best per-
formance for data processing on the unrefined and
refined data?

How data size and cluster size affect the perfor-
mance?

Which back-end is the most cost-effective?

RQ2:

RQ3:

RQ4:

RQS5:

C. Technological framework

The reference application used to answer the research ques-
tions is developed using state-of-the-art technologies for large
scale data processing. The considered technologies support an
easy deployment of the data analysis application on a cloud
infrastructure. Indeed, most key software packages can be
found already installed on the VM instances of several cloud
providers. In particular, the main software packages considered
can be summarized as follows:

o Apache Spark [12] is the data processing engine that
performs the analyses on large amounts of data and
distributes the workload on the entire cluster. The queries
used for data analysis are implemented using the func-
tions of the Spark.SQL package

o Apache Hadoop [13] is the base layer that manages the
entire cluster.

o Apache Hive [14] acts as a metastore, holding databases
and table information as well as their physical location
on the storage, can also be used to execute queries.

o Apache Tez [15] is used as the engine to execute Hive
Jobs, up to 100 times faster than the deprecated Hadoop’s
Map Reduce built-in engine.

o Apache Hudi is a library shipped with Spark [12] that
manages the format of the data we work with. Since the
main application of Hudi lies in Change Data Capture,
the libraries provides many useful features such as data
de-duplication and a commit mechanism that keeps track
of the changes applied to the dataset.

D. Cloud deployment scenario

The application used to evaluate the performance of data
analysis technologies is based on a PaaS paradigm. specifi-
cally, the reference scenario is based on the AWS platform.

The main experimental testbed is built upon the EMR
(Elastic Map Reduce) service, provided by the AWS platform.
In the experiments, the EMR clusters consist of three or more
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EC2 (Elastic Compute Cloud) virtual machine instances that
can be allocated on demand and scaled both vertically and
horizontally. We use m5.xlarge VMs in the cluster.

The popularity of EMR for cluster management is motivated
by its ease of use. Besides the specific need of the industrial
partner, the choice to focus on a popular solution increases the
general applicability of this study results.

Concerning the storage requirements, the cloud architecture
exploits the Amazon S3 [16] service. In the tests, two different
buckets are used to store input and outputs supporting both raw
data coming from the extraction process and Hudi-parquet for-
matted databases. Again the choice of S3 is popular in AWS-
based scenarios thanks to its excellent price to performance
ratio, compared to analogous services available on AWS (such
as RDS).

The overall architecture is described in Fig. 1. A Spark
cluster managed by EMR consists on two support nodes
(Master and Driver nodes). These nodes are in charge of
managing the cluster, monitoring the worker nodes performing
data processing and coordinating the data distribution across
these nodes. The worker nodes are responsible for the actual
data processing. All the data (for both input and output
operations) are stored in data buckets managed by S3. An
additional component is the Hive metastore, that can be used
to accelerate data retrieval.

E. Workload

The workload used in the experiments is based on
anonymized data from Doxee. Data representation is based
on widely used data formats and is representative for this
class of applications. The ingestion phase operates on data
sets composed of a large quantity of small JSON files and
compressed with a Snappy encoding. The size of each JSON
file ranges from a few KB to tens of MB. The data used
in the ingestion phase (anonymized before being processed)
originates from three separate production plants. Each one of
these produces a different volume of data to be ingested by

the cloud architecture. The amount of data ingested feeds the
unrefined area, that contains up to 39GB of data.

The queries on the unrefined zone operate on the data lake
based on the ingested data, and produce a new working set
for the refined area, with a size up to 10GB and composed on
a highly structured set of tables.

IV. EXPERIMENTAL RESULTS

We now present the main results of the tests carried out on
the considered prototype deployment of the Doxee application.

A. Ingestion performance

The first set of analyses focuses on the data loading perfor-
mance. The application processes a stream of data in JSON
format that must be processed and imported into a set of tables
using a Spark job. The tables are managed using the Apache
Hudi backend.

To answer to RQ1, Spark performance are evaluated as
a function of the number and size of input files. These
results are obtained from an anonymized data-set based on a
simplified version of the input data of the Doxee application.
The experiments are repeated 10 times providing both average
time and its standard deviation.
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Fig. 2. Ingestion time vs. workload size

Fig. 2 shows the response time with respect to the overall
workload size in MB (green curve and tics on the top of the
figure for workload size values) and the number of files (purple
curve and tics on the bottom). We observe a scaling in terms
of job execution time in both scenarios. The graph shows a
non-negligible Spark setup-time (evident especially for small
tasks/jobs), close to 20s, before the actual processing starts.
As the file size grows (and the number of file grows too, due
to an almost constant size of the input files), the execution
time increases linearly (note that Fig. 2 uses a logarithmic
scale on its axes). We can thus answer to RQ1 pointing out
that execution time has a fixed startup time and then grows
linearly with the workload size.



To understand the reasons behind this linear behavior we
consider a month’s data from the main production plant
of the partnered company (approximately 40 GB of JSON
archives). Since the ingestion process takes a significant time
to complete, it is possible to provide a breakdown of the
execution time. The Amazon EMR dashboard divides the CPU
utilization into I/O, Processing time, and other overheads (e.g.,
Spark management jobs). The results are provided in Fig. 3.
The green parts predictably show that a significant amount
of the process is strictly I/O bound (especially in the final
writing phase of each job), while the blue parts demonstrate
the CPU-bound phases of the jobs.
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Fig. 3. Spark Jobs subdivision and time allocation

A further analysis, relevant to answer to RQ2, concerns the
impact of compression of the Hudi tables. A comparison of
the previous workflow, with the addition of a compression
phase, is carried out by setting the appropriate parameters in
Apache Hudi configuration. The results in Fig. 4 show that
this additional step in the elaboration process does not entail
a major increase on the total execution times, but can reduce
the space used on disks by more than 50%, resulting in a
reduction of the storage costs in the cloud deployment. We
can thus answer to RQ2 by stating that compression provides
a benefit in terms of storage utilization with a computation
overhead that is almost negligible.

B. Query performance in unrefined zone

As a follow-up to the Ingestion phase, performance metrics
related to the query execution, are collected with special focus
on query processing times. This set of experiments is relevant
for RQ3 and RQ4. Experiments are carried out using nine
subsequent queries with increasing complexity (joins, filtering
and stored procedures) on the previously processed data and
compare the performance achieved using just Spark and Hudi
against the use of a Hive metastore.

The performance of queries carried out on the landing zone
is presented in Fig. 5. The execution times on three datasets
with size ranging from 300MB to 39GB are provided for both
Spark (using the default Hudi data backend) and Spark plus
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Fig. 5. Execution time of queries on different data sets (unrefined area)

Hive as data backend. The queries are defined in such a way to
extract meaningful information from the unrefined data. Such
information is used to feed a different data lake of refined data.
For each configuration both the execution time of the queries
and the setup time is considered. Setup time is used to load the
dataset in memory for Spark with the default Hudi backend
and to update the meta-store in the case where Hive is used.
The setup phase for Hive has a non-negligible cost, in the order
of 2/3 minutes and this time is not related to the working set
size. On the other hand, the setup operation of Spark remains
in the order of a few tens of seconds for small workloads, but
grows significantly as the data set increases. The execution
time is comparable for both data storage backend, with the
Hive technology being slightly slower, due to the risk of the
Hive metastore acting as a bottleneck.

To answer to RQ3 it is important to note that the combi-
nation of execution time and setup time leads to the worse
performance of the Hive metastore leading for small/medium



working set sizes. A small benefit is observed in the case of
large (i.e., tens of GB) working sets, when the Hudi setup time
becomes extremely long. This is a first observation relevant
also to answer the first part of RQ4 in the impact of working
set size.

It is worth to point out that, in the experiments, the setup
of the Hive metastore would not be necessary if the metastore
is made persistent and can be simply re-loaded in memory
before executing the queries (this operation in other not
reported experiments takes less than 5 seconds). This option
is not considered due to the complexity of guaranteeing the
consistency of the metastore when the operation on the data
lake increases in complexity and heterogeneity. A different
scenario where the data access pattern is more read-oriented
or where the data ingestion process is more straightforward
would make the use of Hive more appealing also for working
sets relatively small.

C. Query performance in refined zone

An additional analysis on the queries in the refined zone of
the data lake is carried out. These queries are different from the
ones discussed in the previous section as they aim to extract
high value-added information from a relatively small data set.
For these reasons the queries tend to be slightly more complex
compared with the queries in Sec. IV-B. In this scenario two
parameters are considered: the size of the cluster used to carry
out the analysis, and the working set the queries are performed
on.

Fig. 6 provides significant information to answer to the
second part of RQ4 concerning the impact of the cluster size
used for data processing. The figure shows the execution time
of the queries as a function of the number of VMs in the EMR
cluster. It is worth to note that the minimum EMR cluster size
is 3 VM (two VMs act as master and driver nodes, while one
VM is the only worker node). The results are referred to a
data set consisting of roughly 10GB of data. The response
time is divided in query execution time and setup time for
both the spark and the hive metastore. The setup time is
again fundamental for the performance and seems unaffected
by the cluster size. In particular, the Hive metastore setup
is unacceptably slow (more than two minutes) compared to
the query execution time. Focusing on the query execution
time, an inverse relationship between the execution time and
the number of VMs is visible. The query execution time is
reduced by 32% as the VMs switch from 3 to 4, but decreases
of only by 9% as the cluster size grows from 6 to 7. This
observation suggests that the benefit of increasing the cluster
size decreases as we use larger sets of VMs. This additional
analysis completes the answer to RQ4.

The consideration on the impact of increasing the EMR
cluster size is the basis for a consideration on the cost of
running queries on clusters of different size, that is the focus
of RQS5. Considering that the application should run a long
sequence of queries on the cluster, it is possible to model the
cost of VMs as linearly growing with time, disregarding the
per-hour quantization of VMs prices. Under this assumption it
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is possible to compare the costs of using Hive against relying
on spark only with the default Hudi backend. The cost of using
Hive grows constantly as the cluster size increases, suggesting
that the performance benefit is not enough to compensate
the long setup time. On the other hand, for the Spark-only
scenario, the case where just 2 worker VMs are used (that
is a cluster of 4 VMs) provides a minimum for the overall
computation cost, as adding additional worker VMs would
provide just a marginal performance gain.

Concluding the analysis, the impact of the working set
size on the overall system performance is evaluated. In this
analysis the cluster size is fixed to the 4 VMs that emerged in
the previous analysis as the most cost-effective configuration.
Fig. 8 presents how the query execution time increases with the
working set size. The results confirm the almost constant setup
times for small-medium working set sizes already pointed
out in Sec. IV-B. The figure shows that the execution time
increases with the working set size. It is worth to note that the
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X-axis of the graph uses a logarithmic scale, suggesting that
the growth of the execution time is sub-linear with respect to
the working set size. This result confirms the main conclusion
for RQ3 and RQ4, together with the good scalability of the
considered setup.

V. CONCLUSIONS

The paper focuses on the critical problem of evaluating
performance and costs of cloud applications for the analysis
of large volume of data

Starting from a real test-case an in-depth performance anal-
ysis of the Amazon AWS framework is provided, with special
focus on big data processing. The experiments compare Spark
data processing time when Hudi-only and Hive metastore are
used. For both technologies the impact of query execution and
setup time is measured, demonstrating that execution time can
be modeled as an almost fixed setup time and a processing time
that grows with the data size. The experimental results demon-
strate that that Hive initialization time makes this technology
suitable only for extremely large datasets, reaching 39GB for
our setup.

Additional tests compare the impact of the number of VMs,
considering both performance and costs. The execution time
on the cluster is inversely dependent on the number of VMs,
while setup time is not dependent on the cluster size.

The insight from the experiments, even if based on a specific
application, can be used as a guide for performance modeling
and provisioning of big data applications in a cloud scenario.
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