

Performance Comparison of Technological Solutions for Spark Applications in AWS

<u>Riccardo Lancellotti</u>, Stefano Rossi University of Modena and Reggio Emilia

Giuseppe Calogero Miano, Fabio Miselli Doxee

Motivation

- Big data analysis
- Cloud-based approach
 - Available VM images
 - Large scale storage
- Case study
- Doxee
 - Data analysis applications
 - Stream of data and events
 - AWS as cloud platform
- Performance analysis of technologies

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Motivation

- Problem of performance evaluation
- Several approaches
 - Benchmarks
 - Theoretical models
 - Simulation
- Huge differences in:
 - Applications to consider
 - Workload characteristics
- Contribution
 - \rightarrow Specific case study of big data application

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

- Goal of analysis: compare design alternatives
- RQ1: Model for processing time vs. data size in ingestion?
- RQ2: Benefits and limit of compression?
- RQ3: Best back-end for data for performance?
- RQ4: Impact of size on processing time in queries?
- RQ5: Cost-effective back-end?

Reference scenario

- Application structure
 - Ingestion
 - Queries in unrefined area
 - Queries in refined area
- Technologies
 - Spark (+Spark.SQL) Spar
 - Hive metastore
 - Hudi storage
 - Tez compression

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

EMR Cluster

- Use of m5.xlarge VMs
- (Anonymized) workload
 - ~40G unrefined area
 - ~10G refined area

Worker Node

- T=20s + Ks × Size

- T=20s + Kn × NFiles

- Model for processing time vs. data size in ingestion?
- Response time as a function of
 - Workload size
 - # of files
- File of similar size
- Linear model

Ingestion performance

Ingestion performance

- Breakdown of time
 - CPU-intensive tasks
 - I/O-intensive tasks
- Both tasks depend on amount of data processed
 - Explanation of performance model
- How to best manage storage?

- CPU - I/O - Shuffle - GC - Spark

0s

Impact of compression

- Benefits and limit of compression?
- Use of data compression

- Benefit for I/O tasks + reduced storage costs
- Higher CPU demand
- Several algorithms considered
 - Compression with gzip, Izw, tez, ...
- Similar results for several algorithms
 - Focus just on tez compression
- Comparison of compressed/uncompressed results
 - Working set size
 - Ingestion time

Queries in unrefined area

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

- Best back-end for data for performance?
- Queries on ingested data
- Several queries in sequence
 - Single query time
 - Total execution time (sequence of query)
- Breakdown
 - Setup/Execution
- Comparison of back-ends
 - Spark/Spark+Hive

- Hive
 - Faster
 - Long setup time
- Long sequence of queries
 balances setup overhead

Queries in unrefined area

- Impact of size on processing time in queries?
- Analysis as a function of dataset size
- Hive setup
 - Constant time
- Spark setup
 - Depends on data size
- Spark setup
 - Faster for small dataset

 Hive faster query execution overweights setup only for large working set

Queries in refined area

- Impact of size on processing time in queries?
- Refined area
 - Smaller working set
 - Complex queries
- Impact of cluster size
- Setup time \rightarrow constant
- Execution time → inversely proportional
 - Amdahl's law

• Setup time remains dominating

Queries in refined area

- Cost-effective back-end?
- Cost of VMs by second
 - Consider multiple executions on same cluster
- Setup cost grows with cluster size
- Execution cost can be reduced
- Hive \rightarrow no economic gain
- Spark → sweet spot for 4 VMs

5 VM

6 VM

3 VM

4 VM

7 VM

Conclusion

- Performance analysis
 - Realistic big data analysis application
 - Comparison of alternatives
- Critical impact of setup phases
 - Significant result of experiments
 - Negligible for "many TB" applications
 - Major effect for smaller scenarios

Performance Comparison of Technological Solutions for Spark Applications in AWS

<u>Riccardo Lancellotti</u>, Stefano Rossi University of Modena and Reggio Emilia

Giuseppe Calogero Miano, Fabio Miselli Doxee