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A Hierarchical Receding Horizon Algorithm
for QoS-driven control of Multi-IaaS Applications

Danilo Ardagna, Michele Ciavotta, Riccardo Lancellotti, Michele Guerriero

Abstract—Cloud Computing is emerging as a major trend in ICT industry. However, as with any new technology, new major challenges
lie ahead, one of them concerning the resource provisioning. Indeed, modern Cloud applications deal with a dynamic context that
requires a continuous adaptation process in order to meet satisfactory Quality of Service (QoS) but even the most titled Cloud platform
provide just simple rule-based tools; the rudimentary autoscaling mechanisms that can be carried out may be unsuitable in many
situations as they do not prevent SLA violations, but only react to them. In addition, these approaches are inherently static and cannot
catch the dynamic behavior of the application and are unsuitable to manage multi-Cloud/data center deployments required for mission
critical services. This situation calls for advanced solutions designed to provide Cloud resources in a predictive and dynamic way. This
work presents capacity allocation algorithms, whose goal is to minimize the total execution cost, while satisfying some constraints on
the average response time of multi-Cloud based applications. This paper proposes a joint load balancing and receding horizon capacity
allocation techniques, which can be employed to handle multiple classes of requests. An extensive evaluation of the proposed solution
against an Oracle with perfect knowledge of the future and well-known heuristics proposed in the literature is provided. The analysis
shows that our solution outperforms the heuristics producing results very close to the optimal ones, and reducing the number of QoS
violations (in the worst case QoS constraints violation rate is 4.259% versus up to 17.245% of other approaches and can easily
reduced by roughly a factor of 4 by exploiting the receding horizon approach). Furthermore, a sensitivity analysis over two different time
scales indicates that finer grained time scales are more appropriate for spiky workloads, whereas smooth traffic conditions are better
handled by coarser grained time scales. Analytical results are validated through simulation, which also analyzes the impact of Cloud
environment random perturbations. Finally, experiments on a prototype environment demonstrate the effectiveness of the proposed
approach under real workloads.

Index Terms—Auto-Scaling, Multi-Cloud, Capacity Allocation, Load Sharing, Optimization, QoS
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1 INTRODUCTION

Cloud computing has been a major driving force for the evolution
of the Information and Communication Technology (ICT) industry
over the last years. The main ICT players (e.g., Google [1],
Amazon [2], and Microsoft [3]) have constantly improved cost-
effectiveness, reliability as well as the overall computing power
consumption of Cloud systems. This effort has made the Cloud
a tool mature and suitable for business (outside ICT): it is no
longer surprising to see companies operating in very different
fields shifting their business models in order to benefit from the
advantages associated with this paradigm, which are mainly due
to high elasticity, scalability and cost savings [4].

Nonetheless, Cloud computing, despite the massive popularity
gained over the years, still entails several challenges, especially
in the area of resource provisioning. In particular, it has emerged
evident the need for Cloud providers to guarantee adequate levels
of Quality of Service (QoS) to their customers [5]. For this to
be achieved, advanced operations solutions are needed to provide
support to performance prediction, monitoring of Service Level
Agreements (SLAs), and adaptive configuration while satisfy-
ing requirements on cost-effectiveness, reliability, and security.
Current solutions for enforcing SLAs mainly address single
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Clouds [6], [7], [8]; however, providing SLA guarantees with a
multi-Cloud scope is fundamental when availability is a major
requirement (e.g., mission critical services). Still, when a multi-
Cloud scenario is contemplated, in which several applications are
running simultaneously on data centers belonging to different
providers or, alternatively, on separate data centers belonging
to the same provider, only basic solutions are available. These
usually implement a purely reactive approach (e.g., the Amazon
autoscaling rules [9]) where scaling actions are blindly triggered
when a threshold on some monitoring metric is exceeded (e.g.,
CPU utilization is above 60%).

In an attempt to bridge this gap, a novel resource allocation
solution that is able to dynamically adapt the Cloud resources
in order to satisfy SLAs and to minimize cloud usage costs is
proposed facing the wider scenario where different applications
are hosted across multiple geographically distributed Clouds. The
proposed approach aims at unleashing the full potential of the
Cloud paving the way to a class of services featuring mission-
critical availability at minimum cost. The resource allocation
scheme operates at two levels, optimally balancing the incom-
ing requests at inter-cloud level while optimally allocating the
computational capacity at intra-cloud one. More in details, this
paper proposes a dual time scale approach working on different
scales, both temporal and spatial (single vs. multi-Cloud). At a
coarse-grained time scale (e.g., about one hour), an innovative
technique for the distribution of requests among multiple Cloud
providers is proposed. At the fine-grained time scale (e.g., every
5 or 10 minutes) a receding horizon algorithm allocates virtual
machines (VMs) in each data center meeting QoS constraints
(extending [10]). In both cases, the algorithms exploit predictive
models for workload forecasting. Both the long- and short-term



problems are formulated as mixed integer linear programming
(MILP) problems.

The contribution of this paper is not only limited to the
algorithmic proposal but validates the resource allocation tech-
niques demonstrating that the proposed solutions save costs
without incurring significant SLA violations through three types
of scenarios. First, analytical models are used to compare the
proposed solution with an Oracle with perfect knowledge about
the future [11] and with well-known heuristics proposed in the
literature [12], [13], [14] based on utilization thresholds. Second, a
new simulator that captures the data center behavior including the
presence of exogenous effect on the overall performance, modeled
through random environments [15], has been developed to analyze
the behavior of the resource allocation solutions under a number
of scenarios of interest (e.g., cloud resource contention, queue
length effect, workload spikes). In this way, the simulator allows
evaluating the SLA violations in realistic situations. Furthermore,
the simulator is used for a thorough sensibility analysis with
respect to the time granularity of the control strategy, the random
environments parameters and the workload scenarios. Third, the
results achieved on a prototype environment, developed within the
scope of the MODAClouds project [16], [17] are also presented,
which demonstrate the viability of the proposed algorithms.

Results confirm that our solution outperforms the heuristics
based on utilization thresholds producing results very close to the
optimal ones, which can be achieved by the Oracle (cost savings
range is [30, 80]%) and reducing the number of SLA violations
(in the worst case QoS constraints violation rate is 4.259% versus
up to 17.245% of other approaches and can easily reduced by
roughly a factor of 4 by exploiting the receding horizon approach).
A scalability analysis also demonstrates that both the long- and
short-term resource allocation problems can be solved in less than
two minutes even for large size instances. Therefore, the solutions
can be computed according to the time granularity (1 hour and
5-10 minutes, respectively) which characterizes the problems
themselves leaving to the Cloud infrastructure enough time to
actuate the changes in the system configuration (e.g., to start
additional VMs before the next control time horizon). Moreover,
results demonstrated that the solution time grows almost linearly
with the problem instance size.

Furthermore, a sensitivity analysis over the two time scales
indicates that finer grained time scales are more appropriate for
spiky workloads, whereas smooth traffic conditions are better
handled by coarser grained time scales. The simulation shows that
the overall solution is robust to Cloud environment random pertur-
bations. Finally, the results achieved in the prototype environment
demonstrated that the percentage of SLA violations in a Cloud
deployment under a real workload is less than 2%.

In our previous contribution [10], we presented the early
receding horizon approach used for the fine-grained time scale
short-term problem. In this paper we extend on our previous work
by i) integrating the receding horizon technique with a long-term
and coarse-grain workload management strategy, ii) extending the
model by embracing a multi-Cloud vision, iii) providing a more
in-depth validation that includes also experiments on a real Cloud
deployment.

The remainder of this paper is organized as follows: In
Section 2 the global problem of managing the delivery of web-
based services over multiple Cloud infrastructures is presented
and discussed. Section 3 provides the mathematical programming
formulation of the short- and long-grained resource allocation

problems. Section 4 describes the algorithms used for both the
request distribution over multiple data centers and for the VM
allocation at the level of a single data center. Section 5 evaluates
the quality of our solution through experiments and simulation.
In Section 6 other literature approaches are reviewed. Finally,
Section 7 reports concluding remarks.

2 PROBLEM STATEMENT AND ASSUMPTIONS

This section aims at introducing the design assumptions and sys-
tem models used as a reference throughout the paper. In particular,
hierarchical modeling of the problem is proposed working on
the two different temporal and scope granularities, namely long-
term (introduced in Section 2.3) and short-term (discussed in
Section 2.2).

2.1 Problem overview
This paper strives to capture the perspective of a Software as a
Service (SaaS) provider that runs a suite of applications, in form
of Web Services (WS), across multiple Infrastructure-as-a-Service
(IaaS) providers. Such applications are heterogeneous in terms of
resource demands, workload profiles they are subject to, and SLA
requirements.

Figure 1 depicts the reference multi-Cloud environment con-
sidered in this paper. The system serves a set K of WS classes,
where each class corresponds to a specific web application (here-
inafter the terms WS application and request class will be used
interchangeably). For each class k ∈ K, the incoming workload
arrival rate is denoted by Λk (expressed in terms of number of
requests/s). Applications are deployed on virtual machines (VMs),
which are instantiated on-demand and on a pay-per-use basis by
a set I of IaaS providers. For the sake of simplicity, this work
assumes that a VM cannot be shared, that is it can only host
a single WS application (this hypothesis can be easily relaxed).
Services can be replicated across multiple Clouds or, equivalently,
across different data centers of the same provider (e.g., regions or
availability zones of the Amazon EC2 platform [18]).

Let us assume that, within the scope of a single Cloud, all
the VMs instances are homogeneous in terms of their computing
capacity Ci, share the incoming workload evenly, and their perfor-
mance are never subject to contention issues. This is a legitimate
assumption as it corresponds, within a reasonable range, to the
solution currently implemented by IaaS providers (e.g., [19]). As
far as costs are concerned, two pricing models are offered by
every provider: they supply reserved and on-demand VMs. Let
δi and ρi denote the hourly fees for on-demand and reserved
instances (ρi < δi), respectively, whereas Wi indicates the
overall number of available reserved instances. As for the service
rate, let µk represent as the maximum service rate (measured in
requests/s) featured by a VM of unitary capacity hosting the WS
application k.

Furthermore, let us assume that an SLA contract associated
with each WS class k ∈ K is established between the SaaS
provider and her/his customers. This contract specifies the QoS
levels expressed as a bound on the average response time Rk
for each class k. More in details, given a threshold Rk on the
average response time, the SLA in force for WS application k can
be expressed as Rk ≤ Rk. However, to avoid large disparities
in response times across customer classes (as a result of sticky
sessions the flow of requests from certain customers could be
consistently redirected to the Cloud with the poorest or best
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Fig. 1. Cloud infrastructures and data migration and synchronization system.

performance [20]), a reinforced constraint balancing mechanism
was introduced requiring that Rk,i ≤ Rk for each provider i.

In this work, the problem of minimizing SaaS operations costs
is modeled as a joint multi-Cloud Capacity Allocation (CA) and
Load Sharing (LS) problem and efficiently solved by means of a
hierarchical optimization approach that considers the two different
long and short-term time scales.

At long-term, the inter-cloud load sharing problem is ad-
dressed; at this level, a decision is made on how the next-hour
total expected workload is allocated to different IaaS providers
with the objective of minimizing the compound VM leasing costs.
In other words, every hour the long-term algorithm splits, for
each application k, the prediction for the global incoming request
flows Λ̃k

1 into the request flows for each IaaS provider xk,i
k ∈ K, i ∈ I taking into account the costs for allocating VMs on
the different providers. This is a long-term problem because the
algorithm is executed on about an hourly basis to avoid control
instability issues; moreover, when it comes to reacting sudden
spikes in the workload one-hour horizon is considered a very
long time [21], [22]. The long-term problem time horizon will be
denoted by Tlong that represents the number of hours for which
the workload allocation is calculated. It is worth noticing that in
order to calculate the workload shares, optimized with respect to
the allocation costs, the long-term algorithm solves both LS and
CA problems. More details can be found in Sections 2.2 and 3.1.

The short-term problem, in turn, deals with the intra-Cloud
CA optimization, where the time-scale is in the order of 5 or
10 minutes, which considers as incoming workload the load
distribution share xk,i resulting from the long-term problem. It
operates on a time horizon denoted by Tshort (one hour), as well
as on time slots of duration Tslot The objective is to determine,
for each Cloud i, the minimum-cost number of VM to serve the
assigned percentage of the incoming workload while guaranteeing

1. In the following ·̃ is used to denote the prediction of a given parameter.
For example, Λk denotes the real incoming workload while Λ̃k denotes its
prediction.

the average response time is below a given threshold Rk, i.e.,
Rk,i ≤ Rk. More details are available in Sections 2.3 and 3.2.

The problem considered in this work entails two types of
decisions, with a strong liaison with phenomena observable in
Web applications deployed in the Cloud. The decision made at
the higher level is of tactical nature as it concerns the load
sharing over a long time period. This approach is legitimized
by the characteristics of the incoming workload when observed
at a coarse-grain scale (such as for example one hour). This is
generally smoothed and free of instantaneous peaks, and can,
therefore, be predicted with high accuracy and reliability. This
guarantee the validity of the decision made also for shorter time
periods with the undoubted advantage of simplifying the overall
decision-making process. At finer-grain, however, workload traces
generally exhibit an erratic behavior characterized by high vari-
ability due to the short-term changes of the typical Web-based
workload. For this reason, shorter time scales are used to made
decisions of operational and control nature as the allocation of new
VM instances with the purpose of avoiding saturation conditions
and exceeding the thresholds in QoS constraints. Concerning the
workload prediction, several methods have been adopted over
the last decades [21], [23] (e.g., ARMA models, exponential
smoothing, and polynomial interpolation), making them suitable to
forecast seasonal workloads, common at coarse time scales (e.g.,
day or hour), as well as runtime and non-stationary request arrivals
characterizing the time scales (few minutes) considered here. In
general, each prediction mechanism is characterized by several
alternative implementations, where the choice about filtering or
not filtering input data (usually a runtime measure of the metric
to be predicted) and choosing the best model parameters in a
static or dynamic way are the most significant. However, workload
prediction is out of the scope of this paper.

To conclude, it is worth remarking that the presented multi-
Cloud scenario is technologically feasible thanks to, for in-
stance, the software solutions developed within MODAClouds
project [16], [17], which encompass full-stack modeling, deploy-



ment, and run time management of multi-Cloud applications,
removing technological limitations and lock-ins that have so far
prevented the full potential of this approach (high availability
and cost saving due to IaaS competition and workload redis-
tribution at run time [24]) from being exploited. In particular,
since one of the main inhibitors to the multi-Cloud adoption
is the objective technological challenge of keeping updated the
geographically distributed and technologically distinct databases,
the above-mentioned project provides a distributed middleware
(see Figure 1) in charge of reliably synchronizing data among
(even technologically) different databases [25].

2.2 Long-term request distribution mechanism
The long-term problem concerns the distribution of the incoming
requests load Λk, k ∈ K to the providers of the set I , with a
time scale in the order of one hour, minimizing the cost for the
instances allocated. The problem is solved one hour in advance
based on the workload prediction; in this way, the outcome of the
long-term problem can be used to set up the inter-Cloud Load
Balancer Manager (see Figure 1), which distributes the load for
the short-term problem (one for each provider).

In the resolution of the long-term problem, the decision vari-
able considered are the number of reserved and on-demand VM
instances for each provider and for each class, denoted rk,i, and
dk,i, respectively, as well as the request rate forwarded to each
Cloud provider xk,i. A performance model based on queueing
theory is used in order to evaluate the average response time
(Rk,i) given the number of VMs supporting a WS application
(rk,i + dk,i), and the incoming workload (xk,i). More in details,
each WS application hosted on a VM is modeled as an M/G/1
queue in tandem with a delay center as in [26]. As delineated in
Figure 2 the model features multiple servers (i.e., VMs) running
in parallel to support the same WS application. The incoming re-
quests are assumed to be served according to the processor sharing
scheduling policy, which is frequently used by WS containers [27].
M/G/1 models are widely used in the literature to estimate WS
applications performance [28], [29]. The delay center Dk,i is, in
its most general definition, an application and Cloud-dependent
parameter used to model network and protocol delays introduced
in establishing connections, indirect routing, etc.

Although system performance metrics have been evaluated
by adopting alternative analytical models (e.g., [28], [30]) and
accurate performance models exist in the literature for WS systems
(e.g., [31]), there is a fundamental trade-off between the accuracy
of the models and the time required to estimate system perfor-
mance metrics. Given the strict time constraints for evaluating
performance metrics in the present setting (especially for the
short-term problem), the high complexity of analyzing even small-
scale instances of existing performance models has prevented
us from exploiting such results here. It is important to note,
however, that highly accurate approximations for general queueing
networks [32], having functional forms similar to M/G/1 formula,
can be directly incorporated into the optimization frameworks.

2.3 Short-term receding horizon control mechanism
The short-term problem is managed at the local level of a single
Cloud provider (intra-Cloud). The data center performance is
modeled by means of the same queue system used for the long-
term problem (see Figure 2). Moreover, let us assume that the
performance parameters are continuously updated at run time

Fig. 2. System performance model

(see [26] for further details) in order to capture transient be-
haviors, VMs network, I/O interference [33], and time-dependent
performance of Cloud resources [34], [35]. To model the time
in the short-term problem, multiple time slots of duration Tslot
are considered; furthermore, within the time horizon TShort (one
hour), the problem considers a sliding window of Tw future time
slots. Since the problem deals with time scales finer than one
hour, which is considered the minimum instance charging interval
Tc, it assumes to pay for an instance as soon as it is required. In
other words, the problem formulation assumes that a VM becomes
immediately available and it is deemed to be freely accessible
until the end of its lease term. One hour later, if the instance is
no longer needed it will be released; otherwise, the fee will be
charged again and the VM will remain available one more hour.
The overall number of time slots in the lease term (i.e., one hour)
is denoted by nc and it is assumed to be integer for simplicity.
In the problem formulation, the number of instances already paid
and available in each time slot of the time horizon is represented
by means of parameters (r1k,i, . . . , r

nc
k,i) and (d

t

k,i, . . . , d
nc
k,i) for

reserved and on-demand instances, respectively.
The decision variables of the short-term problem are

(r1k,i, . . . , r
nw
k,i ) and (d1k,i, . . . , d

nw
k,i ), i.e., the number of reserved

and on-demand VMs to be started up during the observation
window Tw = {1, . . . , nw} that, in conjunction with available
instances of both types (that is those for which the lease has
not yet finalized), have to serve the predicted incoming workload
(x̃1k,i, . . . , x̃

nw
k,i ). The final goal is to minimize the aggregate

leasing costs to serve the predicted arrival rate while guaranteeing
that the average response time of each WS application is lower
than the SLA threshold.

The short-term solution algorithm follows the receding horizon
control principle [36], where the optimal solution achieved consid-
ering the whole time window, yet the algorithm enforces only the
decisions calculated for the nearest time slot. This means that the
values (rtk,i, d

t
k,i) are calculated for every future time interval of

Tw, but the algorithm acts on the controlled system by starting
up the optimal number VMs calculated for the first time slot,
that is (r1k,i, d

1
k,i). The short-term optimization process is then

repeated sliding the time window and considering the second time
slot as the new starting point. Tc denotes the set of slots within the
VM lease term. Figure 3 graphically illustrates the relationships
between Tc, Tw and Tslot. In this work, time slots of 5 and 10
minutes are considered as well as observation windows with nw
from 3 up to 5 time slots, that is ranging from 15 to 50 minutes. As



regarding the charging interval Tc, having considered the common
VM lease term of one hour, it resulted composed of 6 or 12 time
slots.
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Fig. 3. Relationships between Tc, Tw and Tslot over time

For sake of clarity, the notation adopted in this paper is
summarized in Tables 1 and 2.

3 OPTIMIZATION PROBLEMS FORMULATION

This section provides the mathematical formulation of the long-
term (Section 3.1) and short-term (Section 3.2) optimization
problems.

3.1 Long-term problem
The crux of the long-term problem is to split the workload
prediction for application k (denoted by Λ̃k) among its replicas
hosted on different Clouds with the objective of minimizing the
resource leasing costs. The problem is solved hourly by means
of a mathematical model, with the scope limited to the following
hour. In what remains of this section, the main principles and
relationships underlying the model will be introduced briefly,
then the mathematical model associated with the problem will
be presented and discussed in detail.

From the system performance model presented in Section 3.1
(i.e., M/G/1) the average response time for class k at provider i
can be derived in closed form as:

Rk,i =
1

Ciµk −
xk,i

rk,i+dk,i

+Dk,i (1)

Moreover, enforcing the M/G/1 equilibrium condition, which
avoids infinite queue lenght at VMs [29], [32] it holds:

xk,i < Ciµk
(
rk,i + dk,i

)
that can be rearranged as:

rk,i + dk,i >
xk,i

Ciµk

Consequently, the average response time, Rk,i, can be expressed
according to the formula:

Rk,i =
rk,i + dk,i

Ciµk
(
rk,i + dk,i

)
− xk,i

+Dk,i

which, by imposing the QoS condition Rk,i ≤ Rk leads to the
following inequality after some algebra:

rk,i + dk,i ≤
(
Rk −Dk,i

) [
Ciµk

(
rk,i + dk,i

)
− xk,i

]
and then:

rk,i + dk,i + xk,i

(
Rk −Dk,i

1−
(
Rk −Dk,i

)
Ciµk

)
≥ 0

TABLE 1
Parameters of the Capacity Allocation Problem.

Global parameters
I Set of IaaS providers
Ci VMs instance capacity of provider i
δi Time unit cost (measured in dollars) for on-demand VMs of

provider i
ρi Time unit cost (measured in dollars) for reserved VMs of provider

i
K Set of WS classes
Dk,i Queueing delay (measured in s) for processing WS class k requests

at provider i
Rk,i Average response time (measured in s) for WS class k request at

provider i
Rk Average response time threshold (measured in s) for WS class k

request
Wi Maximum number of reserved instances available, at provider i
µk Maximum service rate (measured in requests/s) of a capacity 1 VM

for executing WS class k requests

Long Term Problem
Tlong Long-term CA time horizon, measured in hours
Λ̃k Prediction for the total exogenous arrival rate (measured in re-

quests/sec) for WS class k for the whole Cloud system
γi Minimum percentage of traffic distributed to each provider i

Short Term Problem
Tw duration of the window of observation
Tc duration of the charging interval
Tslot Short-term CA time slot, measured in minutes
nc Number of time slots within the charging interval Tc
nw Number of time slots within the time window Tw
rtk,i Number of reserved VMs available for free for the time slot t in

the interval under analysis, for class k requests, at provider i
d
t
k,i Number of on-demand VMs available for free for the time slot t in

the interval under analysis, for class k requests, at provider i
xjk,i Real local arrival rate (measured in requests/s) for WS class k, at

provider i and at time slot j
x̃tk,i Local arrival rate prediction (measured in requests/s) for WS class

k, at provider i and at time slot t

TABLE 2
Decision variables of the Capacity Allocation Problem.

Long Term Problem
dk,i Number of on-demand VMs to be allocated for WS class k request,

at provider i
rk,i Number of reserved VMs to be allocated for WS class k request,

at provider i
xk,i Arrival rate (measured in requests/s) allocated to provider i, for

class k request

Short Term Problem
dtk,i Number of on-demand VMs to be allocated for WS class k request

at time slot t at provider i
rtk,i Number of reserved VMs to be allocated for WS class k request at

time slot t at provider i

Note that it can be safely presumed that 1 −(
Rk,i −Dk,i

)
Ciµk < 0 since Ci > 0, µk > 0, whereas

Rk,i � Dk,i and Rk � 1
Ciµk

are well-accepted assumptions
(i.e., the QoS threshold has to be higher than the queueing network
delay Dk and the request service time 1

Ciµk
).

Hence, being δi and ρi the costs of on-demand and reserved
VM instances for provider i, respectively, the joint Capacity
Allocation and Load Sharing problem can be formulated as:

(Plt) min
rk,i,dk,i,xk,i

∑
i∈I

∑
k∈K

(
ρirk,i + δidk,i

)
(2)



Subject to the conditions:

rk,i + dk,i −
xk,i

Ciµk
> 0 ∀i ∈ I, ∀k ∈ K, (3)

rk,i + dk,i +
xk,i(Rk −Dk,i)

1−
(
Rk −Dk,i

)
Ciµk

≥ 0 ∀i ∈ I, ∀k ∈ K, (4)∑
i∈I

xk,i = Λ̃k ∀k ∈ K, (5)

xk,i ≥ γiΛ̃k ∀i ∈ I, ∀k ∈ K, (6)∑
k∈K

rk,i ≤Wi ∀i ∈ I, (7)

rk,i ≥ 0, rk,i ∈ N ∀i ∈ I, ∀k ∈ K, (8)
dk,i ≥ 0, dk,i ∈ N ∀i ∈ I, ∀k ∈ K. (9)

(Plt) can be classified as a Mixed Integer Linear Programming
(MILP) problem, since the variables of the problem are integer
or float and the objective function and constraints are linear. In
particular, it minimizes the total leasing costs considering both
on-demand rk,i and reserved dk,i over a time-period of one hour;
to achieve this goal the model has to decide not only the number
of instances but also the optimal load sharing policy, xk,i (which
does not contribute directly to the value of the objective function,
though). As a result of the problem, the workload of the system
for the next hour is redirected to each provider i and application k
according to the probability defined by xk,i∑

i′∈Ixk,i′
.

As far as the constraints are concerned, inequalities (3), as
discussed earlier, impose the equilibrium distribution to the un-
derlying M/G/1 queue models (one per application k and provider
i). This constraint set strongly relates to (4), which implements
the response time bounds defined in the service level agreements.
The equilibrium conditions (3), in fact, imply the positivity of the
denominator in the response time formula (1).

Constraints (5) (6) define how the model can split the predicted
workload; on the one hand, constraints (5) ensure that the traffic
assigned to individual providers equals the overall load predicted
for application k. Thus, the model is forced to assign the whole
traffic. On the other hand, constraints (6) guarantee that every IaaS
receives at least a fraction γi of workload, preventing scenarios
where all the workload is simply forwarded to the minimum-cost
provider featuring the most economically advantageous offer.

The constraint set (7), creates of a liaison between different
classes of applications making the problem much harder to solve:
at the same provider, in fact, the model is allowed to allocate the
maximum numberWi of reserved instances, considering all whole
set of applications deployed; without this constraint, the problem
would be separable in |K| independent sub-problems.

3.2 Short-term problem
The short-term problem is addressed starting with the solution of
the long-term one. However, the time granularity of the problem
is much finer, thus motivating the differences in the problem
model. The Capacity Allocation (CA) problem is solved over an
observation window Tw of nw time slots and aims at minimizing
the overall costs for reserved and on-demand instances to serve
the predicted arrival rate x̃tk,i while guaranteeing SLA constraints.
The ·̃t notation highlights that the arrival rate prediction does not
refer to the overall arrival rate from the long-term problem, but it
is a prediction of the local workload for time slot t. That said, the
CA problem can be formulated as:

(Pst) min
rtk,i,d

t
k,i

∑
k∈K

(
ρi

nw∑
t=1

rtk,i + δi

nw∑
t=1

dtk,i

)

Subject to the conditions:

t∑
τ=1

(
rτk,i + dτk,i

)
+ rtk,i + d

t
k,i >

x̃tk,i

Ciµk
∀t ∈ Tw,∀k ∈ K,

t∑
τ=1

(rτk,i + dτk,i) + rtk,i + d
t
k,i+ ≥ x̃tk,iAk,i ∀t ∈ Tw,∀k ∈ K,∑

k∈K
(rtk,i + rtk,i) ≤Wi ∀t ∈ Tw,

rtk,i ≥ 0, rtk,i ∈ N ∀t ∈ Tw,∀k ∈ K,
dtk,i ≥ 0, dtk,i ∈ N ∀t ∈ Tw,∀k ∈ K.

(10)

(11)

(12)

(13)

(14)

where Ak,i =
Rk,i −Dk,i(

Rk,i −Dk,i
)
Ciµk − 1

≥ 0.

It is worth noticing that problem (Pst) shares several similari-
ties with the (Plt); in particular, the objective function is designed
to catch the effects of on-demand and reserved instances on the
overall leasing costs, whereas constraints (10), (11) and (12) are
semantically equivalent to (3), (4) and (7), respectively. The main
differences compared to the (Plt) lie in explicitly considering time
(and therefore system state) and not implementing a load sharing
policy (i.e., x̃tk,i, ∀k, i, t are parameters of the model).

More in detail, the inequality set (10) derives from the per-
formance models of Figure 2 and it corresponds to the M/G/1
equilibrium condition; the average response time is given by:

Rtk,i =
1

Ciµk −
x̃tk,i

rtk,i+d
t
k,i+

∑t
τ=1(r

τ
k,i+d

τ
k,i)

+Dk,i (15)

Constraints (11), instead, can be obtained after some algebra
form the QoS conditions Rtk,i ≤ Rk and (10) and (15) as follows:

rtk,i + d
t
k,i +

t∑
τ=1

(
rτk,i + dτk,i

)
≤

(
Rk,i −Dk,i

) [
Ciµk

(
rtk,i + d

t
k,i +

t∑
τ=1

(
rτk,i + dτk,i

))
− x̃tk,i

]
⇔

t∑
τ=1

(rτk,i + dτk,i) + rtk,i + d
t
k,i +

x̃tk,i(Rk,i −Dk,i)

1−
(
Rk,i −Dk,i

)
Ciµk

≥ 0 (16)

Note that, for the reasons discussed in the previous section, it
can be safely assumed that 1−

(
Rk,i −Dk,i

)
Ciµk < 0.

Lastly, inequalities (12) impose for each time slot t a budget
constraint on the overall number of available reserved VMs, that
can not be greater than Wi (i.e., the number of VMs for which the
SaaS subscribed a long-term contract on provider i).

To conclude notice that, overall, problem (Pst) is also a MILP,
and it can be efficiently solved by commercial solvers even for
large instances (the scalability analysis is discussed in Section
5.5).

4 SOLUTION ALGORITHM

In this section are presented the two algorithms used to solve the
long- and short-term problems, respectively.



Algorithm 1 Request distribution algorithm
1: procedure REQUEST DISTRIBUTION
2: for all k ∈ K do
3: Λ̃k ← GetNextHourPrediction (k)
4: end for
5: Solve (Plt)
6: Redirect global workload according to xk,i results
7: end procedure

4.1 Solution of the long-term problem
The long term problem algorithm is rather straightforward as it
lies directly on the solution of the model presented in Section
3.1. As matter of fact, since the model (Plt) does not consider
the state of the system at any point, that is the solutions of
two consecutive hours are totally unrelated, the algorithm (as
defined in Algorithm 1) does not store information or keep track
of previous solutions, ultimately resulting in a lean and easy to
implement algorithm.

From the architectural and deployment perspective, within the
MODAClouds vision Algorithm 1 is executed by a component
hosted by any of the Clouds that make up the execution context.
This is necessary because the model around which the algorithm
pivots is centralized. The algorithm consists of three main steps:
workload prediction, model solution, load balancer manager set-
ting up. It basically invokes a prediction function to forecast the
incoming flow of requests for the next hour (Λ̃k). The flows of
real requests, needed for the prediction, are monitored locally to
each data center on an hourly basis and then shared with the
data center running Algorithm 1. The output of the forecasting
function is a vector of future requests that is fed into a solver that
computes an optimal solution for the Plt optimization objective
defined previously. The result is the partition of the incoming
workload across the multiple Cloud providers. The enforcement
of the problem solution is performed by properly changing the
weights (according to xk,i∑

i′∈Ixk,i′
) of the of the MODAClouds

multi-Cloud load balancer [37] or of DNS servers of each Cloud
provider [38].

4.2 Solution of the short-term problem
The short-term problem is addressed using a controller imple-
menting a receding horizon policy, outlined in Figure 4. A replica
of this controller component resides in every Cloud provider
(data center) and operates independently from the other providers,
unlike the solution for the long-term problem, which is centralized.
At each time slot (marked by a clock spike) the monitoring
platform on Cloud provider i provides the new workload predic-
tions (x̃1k,i, . . . , x̃

nw
k,i ) for the current time window Tw and new

estimates for the performance parameters Dk,i, µk. The optimizer
component feeds the optimization model using the current ap-
plication state expressed in terms of allocated VMs. Afterwards,
the optimizer harnesses the model to calculate the most suitable
number of VM instances to allocate during the whole time window
in order to guarantee the arranged SLAs. Finally, the optimizer
operates on the running Cloud applications, through IaaS APIs,
enacting only the first time slot of the attained allocation plan.
Notice that performance parameters are continuously updated at
run time in order to capture transient behavior, VMs network and
I/O interference [33], and performance variability of the Cloud
provider [34].

Algorithm 2 is a high-level description of the receding horizon
approach implemented to solve the short-term problem. The algo-
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Fig. 4. Receding horizon controller.

rithm consists in four main steps, iteratively applied to cover the
overall time horizon. The first step (lines 2-8) initializes the main
model parameters representing the system state and the predicted
workload for the considered time window. In particular, the system
state is defined by the number of reserved and on-demand VMs
already available for each time slot of the observation window.
It is worth noticing that, in order to manage the state of the
system (rtk,i, d

t

k,i) in the execution of the algorithm for different
time slots, a set of global parameters (i.e., N t

res,k,i, N
t
ond,k,i)

has been introduced, which store the number of VM instances,
inherited from previous time slots, whose charging period has not
yet ended and, therefore, still available at time slot t. The second
step (line 9) is the solution of problem Pst to optimality using a
third-party solver. The third step (line 11) implements the receding
horizon paradigm by modifying the application deployment using
only the values calculated for the first time slot of the considered
time window (to avoid greedy decisions and to exploit a better
prediction for the steps not in the near future). Note that most
of other literature approaches [6], [12], [30], [39] consider only
a single step time instant in the future that can be obtained with
nw = 1. Finally, (lines 12-15), the algorithm updates accordingly
the system state, N j+t

res,k,i, N
j+t
ond,k,i. Since the VMs allocated

at time t are available until the end of their charging period,
the algorithm only updates the state from t to t + nc. As a
consequence, at time slot t + nc + 1 these instances will be
switched off, if no longer needed.

5 EXPERIMENTAL CAMPAIGN

In this section, the paper contribution will be compared with the
state-of-the-art techniques currently used in Cloud systems, with a
focus on the auto-scaling policies that are typically implemented
by IaaS cloud providers. In particular, the cost of the different
solutions and their ability to meet response time constraints will
be investigated. Moreover, the scalability of the whole approach
will be also analysed.

Throughout this section, the experimental setup is outlined in
Section 5.1 while Section 5.2 provides an insight on the heuristics
used for the comparison. In Section 5.3 analytical models are
used to discuss costs and the ability to satisfy SLAs of the
multiple alternative considered while Section 5.4 evaluates the
performance stability exploiting a simulator designed to capture
a more realistic scenario where performance may change due to
data center resource contention. Finally, Section 5.5 reports the
scalability analyses while Section 5.6 concludes the evaluation of
this paper research contribution by considering a real system.



Algorithm 2 Receding Horizon Algorithm
1: procedure SOLUTION ALGORITHM
2: for all k ∈ K do
3: for w ← 1, nw do
4: x̃wk,i ← GetPrediction (w, k)
5: rwk,i ← Nt+w

res,k,i

6: d
w
k,i ← Nt+w

ond,k,i
7: end for
8: end for

9: Solve (Pst)

10: for all k ∈ K do

11: Scale (k, r1k,i, d
1
k,i)

12: for j ← 1, nc do
13: Nt+j

res,k,i ← Nt+j
res,k,i + r1k,i

14: Nt+j
ond,k,i ← Nt+j

ond,k,i + d1k,i
15: end for
16: end for
17: end procedure

Initialization

State update

Solving the
current model

Applying the changes
according to the first
time slot decisions

5.1 Experimental setup

To assess the performance of alternative resource allocation tech-
nuques, scenarios as close as possible to real Cloud environments
will be analyzed. A large set of randomly generated instances will
be considered. The characteristics of such instances are based on
the parameters available in literature, such as [12], [13], [39], or
from tests on real applications as in [40], [41]. Table 3 provides
an overview of the parameters with their values.

The number of reserved instances will be limited to 10 to
introduce the possibility of saturating the available reserved re-
sources and, as a consequence, to consider also the worst case
solutions where the on-demand resources are used. It is worth to
recall that if reserved instances are not saturated and hence the
constraints (7) and (12) can be relaxed, both the long term (Plt)
and short term problems (Pst) becomes simpler to handle and
can be separated in a set of small problems, one for each WS
application. With respect to the cost parameters, prices are based
on the prices currently charged by IaaS Cloud Providers [2] and
are reported in Table 4. In order to model a scenario where the
infrastructure is worldwide, instance prices are uniformly random
generated within the reported ranges.

TABLE 3
Performance parameters

Dk,iDk,iDk,i µkµkµk WWW

[0.001, 0.05] s [200, 400] req/s 10 VMs

TABLE 4
Cost parameters

On-Demand Reserved

[0.060, 1.520] $/h [0.024, 0.608] $/h

For the workload Λk, instances are generated by using mea-
surements from a large popular Web site (additional details on
the site cannot be provided for non-disclosure agreements). The
workload exhibits a bi-modal distribution with a peak around
10AM and another in the early afternoon while the night is

characterized by low traffic. A different workload for each WS
application k is created by scaling the peak value of each request
class, as in [11], [40], [42], [43]. Furthermore, random noise is
added as in [11]. This extends the original trace and provides
the basis for analyzing the behavior of the WS applications for
different workload conditions. For the sake of reproducibility, all
the script used for generating, adjusting and scaling the workloads
are available online as open source 2.

The workload prediction Λ̃k is obtained by adding white noise
to each sample Λk, as in [40], [44], with the noise proportional
to the workload intensity Λk. For the short time scale problem,
the predictions x̃tk,i in a real context become less accurate as the
number of time slots in the future is increased. Hence, the amount
of noise grows with the time step t ∈ [1 . . . nw]. The choice
of applying white noise is consistent with [43] and provides the
benefit of being independent from the choice of the prediction
technique.

5.2 Heuristics
Before performing the cost-benefit evaluation of this paper con-
tribution, the main heuristics proposed in literature and used to
perform a quantitative comparison will be introduced.

Heuristic 1 derives from [12], [13] and is currently imple-
mented by some IaaS providers (see, e.g., Amazon AWS Elastic
Beanstalk [14]). The heuristic implements an algorithm for auto-
scaling the number of instances in order to handle the workload
variations. Capacity allocation is performed over the overall time
horizon considering an observation window Tw3 and employs the
receding horizon approach by executing only the decisions made
for the first time step in Tw. Heuristic 1 fixes the number of
instances to allocate in each time slot according to some upper
and lower utilization thresholds: In a nutshell, let U1 and U2 be
the lower and upper thresholds respectively. If at time slot t the
utilization exceeds U2 the number of running VMs at time t+1 is
suitably increased; otherwise if the considered metric drops under
U1, a number of VMs, among the oldest ones, is switched off. In
this way, the heuristic tries to keep the utilization U t within the
interval [U1,U2].

U1 ≤ U tH1 ≤ U2 ∀t ∈ [1..n] (17)

As in [40], multiple values for [U1, U2] have been considered.
These values will be discussed in deeper details later.

Heuristic 2 is based on a more accurate evaluation of the
utilization thresholds: instead of considering fixed values for U1

and U2, these values are derived from the response time threshold
Rk. In particular, by considering the response time formula (15)
and the constraints on the average response time (12) the following
condition on the VMs utilization can be obtained:

Uk,i =
x̃tk,i

Ciµk

(
rtk + d

t
k +

t∑
τ=1

(
rτk + dτk

)) = 1−
1

Ciµk
(
Rk −Dk

)

This means that Uk is the VMs utilization corresponding to
the average response time Rk at provider i. If we denote with
α and β, respectively, the coefficient of lower and upper bound
thresholds (α < β) the utilization thresholds can be defined as:

2. https://github.com/deib-polimi/receding-horizon-workload-scripts
3. Current IaaS providers, e.g., [14], implement a pure reactive mechanism

where Tw includes a single step ahead, here windows with the same size of
the receding horizon algorithm are considered for a more fair comparison.



U1,k,i = α

(
1−

1

Ciµk(Rk −Dk)

)
;U2,k,i = β

(
1−

1

Ciµk(Rk −Dk)

)

In this way, different thresholds for different WS classes
can be obtained. In the experiments the adopted thresholds are
characterized by different values of α and β, that will be described
later.

5.3 Cost-Benefit Analysis
This paper proposal is evaluated with a twofold goal. First, the
cost of the proposed approach is compared with the state-of-the-
art solutions previously described to demonstrate that the proposed
solution outperforms the available heuristics. Second, the achieved
QoS is evaluated to understand how it is affected by the number of
time-slots considered in the short-term problem. To this aim two
main performance indicators are considered: the overall virtual
machines costs and the number of SLA violations.

In this cost-benefit analysis only a single IaaS provider is
considered (hence only on Algorithm 2 for the capacity allocation
is taken into account). The scenario is based on a time span
of 24 hours, with each hour divided into time slots of 10 or 5
minutes, depending on the considered time scale. Incoming traffic
can belong either to the normal traffic model category or to the
spiky traffic model one. The two models are based on different
traces obtained from real logs. Both traces, (presented in [40])
show a typical diurnal pattern with peaks at 10.00 AM and 2.00
PM. The spiky traffic model shows variations between the number
of client requests in two consecutive samples that is far higher
than the normal traffic model (that is therefore much smoother).
Furthermore, for each workload trace two levels of noise in the
prediction are considered: low noise, (corresponding to a more
accurate prediction), and high noise. The noise amplitude grows
with the observation window, to capture the degradation in the
prediction accuracy. Specifically, the noise level in the workload
samples x̃tk, t ∈ [1 . . . nw] is proportional to the workload Λk and
grows with t as shown in Table 5. A noise level higher than 45%
is not considered as for larger values the prediction of the single
sample becomes uncertain and comparable with the sample itself,
undermining the effectiveness of the overall approach.

Tslot = 5min Tslot = 10min
t Low noise High noise Low noise High noise

1 10% 10% 10% 15%
2 15% 20% 20% 30%
3 20% 30% 30% 45%
4 25% 40% 40% —
5 30% — — —

TABLE 5
Noise levels adopted.

In the following analysis the following alternatives are com-
pared:

• The proposed short-term algorithm (S-t Algorithm): in the
experiments Tslot ranges between 5 and 10 minutes and
the observation window between 1 and 5 steps.

• Oracle-based algorithm (Oracle): this unrealistic algo-
rithm is similar to the S-t Algorithm but has no error in the
future traffic prediction (hence this algorithm has no SLA
violations and is used as a reference as initially proposed
in [11]).

• Heuristic 1 (Heu1): has the same time horizon, time step,
and VM life span (of one hour for each instantiated VM)
as in the S-t Algorithm. The number of instances is deter-
mined such that the utilization of each running instance
is between some given thresholds. In the experiments
(U1, U2) = (40%, 50%), (50%, 60%), and (60%, 80%)
are considered as in [13], [40].

• Heuristic 2 (Heu2): the threshold coefficients considered
are (α, β) = (0.9, 1.2) and (0.8, 1.3).

The first analysis focuses on the costs of the previously
described alternatives. In this study 10 different classes of requests
are considered and the mean solution cost is shown (the cost
is evaluated for a 24 hours time horizon over multiple test
executions). In particular, three tests for each configuration of
time scale, workload type, noise and thresholds are carried out,
for a total number of 72 runs. For each run the cost is computed
considering the whole time horizon. Due to space limits only the
spiky workload case is described while a more detailed description
of the experimental results can be found in [45].

Figures 5 and 6 refer to a time scale of 5 minutes while
Figures 7 and 8 refer to a 10 minutes time scale. We recall that in
some of the figures the number of time slots considered is less than
5 because, in the case of high noise level and for a long time scale,
the noise level would exceed 45% and would make the prediction
highly unreliable. It is worth noticing that the proposed approach
achieves performance similar to the Oracle solution for every
considered scenario. In particular, for the 5 minutes time scale,
the proposed approach is the second best performing solution,
outperformed just by the Oracle solution. The impact of the noise
is evident if we consider that the distance between the Oracle and
the proposed solution grows as the noise level increases.

Heuristic 2 is the best solution for the 10 minutes time scale,
since the thresholds computed take into account the Web requests
SLA. However, it is worth anticipating that the low costs of
Heuristic 2 have a major impact in terms of SLA violations as we
will show in the following of the analysis. On the other hand, the
Oracle never violates the SLAs (indeed, no unexpected conditions
can arise). Finally, Heuristic 1 turns out to be the worst solution in
the comparison. However, it gradually improves with the growth
of the utilization thresholds.

Beside the cost of the solution, the number of SLA violations
during the 24 hours time horizon is also evaluated (the number of
SLA violations is the number of times during a time slot where
the average response time is above the threshold). The goal of this
analysis is to understand if the receding horizon approach reduces
the violations with respect to single step optimization (that is when
nw = 1), which characterizes most of other literature approaches.
Tables 7, 8, 10 and 9 reported in Appendix show the results of this
analysis. We clearly see that increasing the observation window
size nw, the percentage of SLA violations for the proposed
solution decreases. Furthermore, the proposed technique clearly
outperforms Heuristic 2, both (0.9, 1.2) and (0.8, 1.3), even for
the spiky and highly noisy workloads, where Heuristic 2 provides
lower costs at the price of a higher number of SLA violations
(from 13.530% to 17.245% depending on the time scale and
noise level). We can then conclude that the receding horizon
technique improves the performance of the system in terms of SLA
violations. On the other hand, Heuristic 1 is very conservative: it
satisfies the QoS constraints almost in any condition of traffic and
noise, but it is more expensive than the proposed approach.
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Fig. 5. Solution cost, Tslot = 5min, spiky traffic and low noise level.

 200

 400

 600

 800

 1000

 1  2  3  4

C
os

t [
$]

Number of step ahead

S−t−Algotrithm
Heu1(40,50)
Heu1(50,60)
Heu1(60,80)

Heu2(0.9,1.2)
Heu2(0.8,1.3)

Oracle

Fig. 6. Solution cost, Tslot = 5min, spiky traffic and high noise level.
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Fig. 7. Solution cost, Tslot = 10min, spiky traffic and low noise level.
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Fig. 8. Solution cost, Tslot = 10min, spiky traffic and high noise level.

Comparing the results for the two considered time scales, we
observe that the 5 minutes time scale provides better performance
in terms of SLA violations as violations occurs for 0.556% of the
time (8 minutes over 24 hours) for the normal traffic and 1.065%
for the spiky one (see Tab. 7 in Appendix). For the 10 minutes
interval, the SLA violations are in the range 3.102% – 4.259%,
depending on the noise level (which is still far lower, compared to

the worst case of the heuristics that we recall reaches 17.245%).
Furthermore, if two or more forward steps are used, there is an
additional performance gain for example, in the spiky traffic the
SLA violations drops from 1.065% – 4.259% to 0.428% – 1.204%
(depending on the time scale and noise level) This means that,
from the SLA violations point of view, the proposed algorithm
increases significantly its performance with the adoption of at
least two forward steps. Finally, the analysis demonstrates that
the proposed algorithm steadily reduces SLA violations as the
the observation windows increases, reaching 0.208% – 0.625% of
SLA violations.

5.4 System simulation

Although a first confirmation of the viability of the proposed
approach is provided by the analytical evaluation of the proposed
algorithm (i.e., based on M/G/1 formula) reported in the previous
section, the effect of the interaction among VMs that occurs in
a real data center cannot be taken into account by an analytical-
only validation. In this section a simulator specifically designed
to capture the variable performance of real data centers is used.
The aim is to evaluate the proposed approach in a more realistic
scenario and to consider multiple providers/data centers. In the
following, first the simulator and its setup are described, after
which an in-depth discussion of the results obtained through
simulation is provided.

5.4.1 Simulation Setup
The proposed simulator implements the data center model (il-
lustrated in Figure 2) described in Section 2. In particular, a
reference scenario with three heterogeneous data centers has
been considered, with the global processing power distributed
over the data centers according to the following percentages:
{50%, 25%, 25%}, so that the first data center has a process-
ing capacity double w.r.t. the others. The incoming workload is
partitioned by the long-term algorithm according to the process-
ing capacity of each data center while the short-term algorithm
handles the VMs management in each data center.

To validate our proposal a discrete event simulator has been
used, which is based on the Omnet++ framework [46] and has
been developed ad-hoc for this purpose. In particular, in order
to capture the performance degradation that appears randomly
in Cloud data centers due to resource contention and imper-
fect performance isolation between VMs, Random Environments
(REs) [15] are included in the simulator. REs are Markov chain-
based descriptions of time-varying system operational conditions
that evolve independently of the system state. Hence, REs are
natural descriptions for exogenous variability in a Cloud envi-
ronment [15], [47] and have been successfully used also for
analyzing the performance of servers adopting dynamic voltage-
scaling technologies that change CPU frequency over time to
reduce the energy consumption [48].

REs are implemented within the simulator with two stages to
model the variability of performance of a virtual hardware due
to resource contention (see Figure 9). Under resource contention,
individual VMs are characterized by the service rate µslowk and
delayDslow

k , while under normal operation VMs are characterized
by parameters µfastk > µslowk and Dfast

k < Dslow
k . A transition

probability between the two stages is considered: pfast is the
transition probability from the slow to fast state while pslow is
the probability of the opposite transition.
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Fig. 9. Random Environment modeling Cloud resource contention.

In order to model these effects in the simulator, data from
several experiments on applications running on an Amazon EC2
infrastructure were collected. To this aim, a computationally-
intensive application has been executed on VMs of different
sizes, monitoring the response time of the application as well
as the system parameters. In particular, the CPU utilization and
CPU steal were considered (this latter is the fraction of VM
CPU time that is claimed by the hypervisor). According to the
experimental results, when the application is executed on large
VM instances there is no performance degradation and no CPU
stealing from the hypervisor. On the other hand, when medium
or smaller VM instances are used, the hypervisor introduces a
limitation in the amount of computational resources that can
be used by a single VM. Specifically, as evident from Figures
10 and 11, under constant incoming workload, after a period
with full processing power, the CPU consumption of the VM
is capped by the hypervisor, the VM performance degrades and
the CPU steal parameter increases. For an application that is not
completely CPU-bound, such as a web-based application where
a load balancer distributes the load across multiple VMs, the
effect of resource capping is less evident, with the response time
assuming a bimodal distribution, as suggested by the samples
in Figure 12. In this case, the limitation on the CPU demands
is activated in an intermittent way, determining an alternating
succession of normal and degraded performance that is easily
modeled by the REs model of our simulator.

The parameter of the REs in the simulator are obtained through
experiments on the real system. Table 6 reports the resulting
values. In particular, the impact of congestion on the VM perfor-
mance (both in terms of processing time and of delay) is quantified
using the performance degradation ratio while the transitions
between slow and fast states are modeled as exponentially
distributed time intervals characterized by their average value.
The parameters for the data center in a state with no resource
contention (Dfast and µfast) are the same used in the previous
experiments and can be found in Table 3.
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 0

 500

 1000

 1500

 2000

 2500

 0  500  1000 1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

e 
tim

e 
[m

s]

Time [s]

Fig. 12. Performance degradation in a multi VM web server application.

TABLE 6
Simulator parameters

parameter value
RE parameters

µfast

µslow
= Dslow

Dfast
2.42

T (fast→ slow) 994.05 [s]
T (slow → fast) 694.80 [s]

Data center parameters
Q 5-40
To 5, 10× 1

µfast

An additional element that is captured by the simulator is
the process of client requests dropped from the waiting queue.
We consider that client requests may leave the system without
being served for the following two reasons: (1) because of the
expiration of a timeout To as the user is not willing to wait for
the completion of the request and (2) because the WS buffer
queue size is a finite value Q and only a limited number of
requests may be waiting for service. This latter functionality is
typically configured in web servers such as Apache httpd [49] to
avoid thrashing conditions. In the performed experiments, several
scenarios have been explored for different combinations of To
and Q, as detailed in the following subsection. A summary of the
parameters used for simulations is provided in Table 6.



5.4.2 Sensitivity to queue length and timeout
The simulator introduced in the previous section has been used to
evaluate the number of dropped requests as well as the number
of SLA violations for different values of the window Tw and for
different values of queue length Q and timeout To. Specifically,
two scenarios for the timeout parameter has been considered, that
is, a short timeout scenario where the timeout is five times the
response time without resource contention 1

µfast
+ Dfast and a

long timeout where the timeout is ten times that value. For each
scenario multiple queue lengths Q and observation window sizes
Tw have been considered.

The results of these experiments for the two considered sce-
narios are reported in Appendix by Table 7. With respect to the
short timeout scenario, three interesting results can be observed.
First, for every considered combination of parameters, no SLA
violation occur. Focusing on the percentage of dropped requests,
it can be observed that the values range from 0.3% to 1.8%.

The second finding is that the percentage of dropped requests
decreases as the queue length grows. This result is easily explained
by considering that with longer queues the system is able to better
manage incoming peaks of requests, without the need to reject
some of them. Finally, the number of dropped requests decreases
also with increasing size of the observation window used by the
receding horizon algorithm. This result confirms that the proposed
solution can handle effectively the Cloud workloads with an
auto-scaling mechanism that is more effective as the observation
window increases.

What has been found experimenting with a short timeout is
basically confirmed by the experiments with the long timeout
scenario. However, comparing the results of the two scenarios,
it can be observed that the percentage of dropped requests for the
long timeout case ranges from 4.2% to 0.7%, which is significantly
higher than the results of the short timeout alternative. This result
can be explained considering that, in the case of a long timeout,
requests stay within the system for longer periods and, due to
the processor-sharing nature of the model, consume resources
that may delay other jobs. On the other hand, in the case of a
short timeout, long requests tend to be dropped from the system
after a short time, thus having a smaller opportunity to consume
resources.

Furthermore, it is worth noting that, when the queue length
grows beyond 30 requests, besides the reduction in the number
of dropped requests, a small amount of SLA violations can
be experienced (below 0.1%). This result can be explained by
considering that the longer the queue length, the higher the number
of requests within the system, resulting in a growth in the response
time, which eventually determines the SLA violations.

5.5 Scalability Analysis

This section presents the results of a scalability analysis that has
been performed for both the long and the short-term problems.
In particular, in order to consider problems of increasing sizes,
the number of classes has been varied from 40 up to 160 with
step 20. It is worth noting that in the scalability analysis of the
short-term problem also the number of steps ahead becomes a
degree of freedom. In particular, it has been varied between 1 and
5. The experiments has been conducted on a server based on an
Intel Xeon Silver 4114 2.20 GHz processor and 48 GB of ram
and using version 10.1.0 of the CPLEX solver. Figure 13 shows,
for problem instances of different sizes, the computational times
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Fig. 13. Long-term Problem scalability.

in seconds (averaged over ten different runs) required to solve the
long-term capacity allocation problem, which is, in all the cases,
within very few minutes. Therefore the problem can be solved
on an hourly basis, i.e. the granularity considered for the long-
term problem. Figure 13 also shows that the proposed method
scales linearly with respect to the number of classes. Indeed, the
coefficient of determination with respect to a linear function is
R2 = 0.978 when |I| = 1, R2 = 0.953 when |I| = 3 and
R2 = 0.978 when |I| = 5.
Figure 14 plots the execution time, for different problem sizes
and averaged over ten runs, of the short-term problem, varying
the number of steps ahead within the range [1, 5]. The Figure
shows that the proposed method scales linearly with respect to the
number of classes. The values of the determination coefficient with
respect to a linear function is R2 = 0.977 in case of nw = 1,
R2 = 0.978 in case of nw = 3 and R2 = 0.981 in case of
nw = 5. Moreover, this analysis demonstrates that the short-term
problem can be solved according to a time scale of 5/10 minutes,
even in the case in which |K| = 160 and |I| = 5, which can
be considered, in practice, a very complex case. Indeed, the short
term problem solution can be computed in less then two minutes
and there is time (about three minutes) to provision, possibly,
the additional VMs identified for the next control time horizon.
However, it is quite unlikely in practice for a Cloud customer to
have more than few tens of different application classes. Note that,
considering additional time slots does not change significantly the
optimization time.
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5.6 Prototype Environment Analysis
The experimental analysis presented in this section has been per-
formed considering the Modelio Constellation modeling platform



developed by Softeam within the MODAClouds project [50].
Modelio Constellation is a web-based software-as-a-service mod-
eling environment, which includes four main components. The
Administration Server provides users with a GUI through which
the available projects and their configuration can be retrieved,
modified and updated. The Administration Database is used to
store the access permission policies. The SVNAgent uses SVN to
provide versioning, sharing and conflict management with the aim
of enabling multiple users to work simultaneously on the same
project. To offload the previous component from some of the
burden, the HTTPAgent component provides read-only access to
the models. Constellation is subject to a variable workload during
a day.
In order to reduce the complexity of the Constellation case study
and given the fact that the 80% of the requests have been found
to be SVN reads, a simplified scenario has been considered for
the evaluation of the short term algorithm, in which the only
HTTPAgent was deployed in a dedicated VM. Along this path,
the resource demand of the HTTPAgent was measured and found
to be around 40 ms (in particular Dk = 5 ms, 1

µk
= 35 ms).

In order to evaluate the system, two different workloads have
been considered: (1) a ramp-like workload (Figure 15) with a
peak around 30 requests/s was and (2) a workload from real users
(Figure 16) spanning 24 hours and obtained from the logs of a pre-
production environment, which was basically a bi-modal workload
with 100 requests/s at its peaks, located in the central part of the
day. In this second scenario, the original 24 hour-lasting workload
was shrunk to 4 hours in order to reduce the duration of each
experiment, making sure to scale down also the workload peak, to
keep the original workload variations.
The validation experiments tested the capability of the short
term algorithm to react to workload fluctuations considering
the SOFTEAM HTTPAgent component deployed on Amazon
m3.large VMs. Apache JMeter was as workload injector. An
average response time QoS constraint equal to 560 ms was set and
our receding horizon algorithm used a 5 steps ahead control with
a time period of 5 minutes. Workload predictions were obtained
by using an ARIMA model while service demand estimates were
obtained through the Extended Regression for Processor Sharing
resources (ERPS) method [51], acting at 10s time scale.
The short term algorithm started up to 11 VM instances in the
case of the ramp-like workload and up to 10 VM instances at the
second peak of the bimodal workload. Figures 17 and 18 show
the requests response time for the two considered workloads,
along with the response time threshold that was set in order to
highlight violations. In the very worst case (ramp-like workload),
the percentage of violations of the average response time measured
at runtime was 1.9% when the average is computed over time
windows of 10 seconds, while it was 0% when the average is
computed over the control time window of 5 minutes. In the ramp
workload scenario the number of allocated VMs is step wise,
while in the bimodal workload case the number of allocated VMs
follows the workload trend.

6 RELATED WORK

As Cloud computing is a promising technology, rapidly growing
and appealing for industries, there is a large corpus of literature
devoted to this topic. A large number of studies consider resource
management in a single data center [6], [7], [43], [52], [53], [54],
[55] while other studies focus on a more complex scenario where
multiple data centers (and possibly providers) are involved [5],
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Fig. 15. VMs allocation, 5 minutes time scale, ramp workload and low
noise level.
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Fig. 16. VMs allocation, 5 minutes time scale, real bimodal workload and
low noise level.

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300

R
e

sp
o

n
se

 t
im

e
 [

m
s]

Time [10s]

Fig. 17. Response times, 5 minutes time scale, ramp workload and low
noise level.
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Fig. 18. Response times, 5 minutes time scale, real bimodal workload
and low noise level.

[56], [57], [58], [59]. For example, [5] focuses on placing cloud
services over a distributed infrastructure by introducing affinity
(from a QoS point of view) between services and geographic
regions, data centers, up to single hosts. This paper contribution
fits in the category of multi data center scenarios, but, unlike [5]
presents a more complex model of the data centers that include
performance (and SLA compliance) with economic concerns.
Furthermore, this paper proposal operates on two different time
scales combining workload allocation and resource management



from a double time-scale perspective.
Another aspect that differentiate the existing literature is the

actor performing the resource allocation that may range from
a IaaS cloud provider managing the allocation of VMs [60],
[61] to a PaaS/SaaS where the workload is allocated over the
infrastructure [53], [62], possibly considering also the scaling up
through the creation of new instances. This research follows this
latter approach applying it to both the switching ON/OFF of VMs
in a single data center (that is the main scope of [53]) and to the
distribution of workload over multiple data centers.

The techniques used to approach the resource allocation prob-
lem propose a plethora of heuristics ranging from Ant Colony
Optimization [6] to Genetic Algorithms [63] or rely on hierarchi-
cal approaches [43], [57], [64] for scalability reasons. A different
approach is to focus more on a mathematical formulation of the
problem [52], [53], [60], [65], [66], aiming to a closed-form
solution or relying on external solvers. In the proposed approach
a mathematical formulation of the problem (with a multi-class
queuing system inspired by [66]) is merged with the proposal of
an algorithm that takes into account also the scalability issues in
the solution of the underlying optimization problem. It is worth to
remark that a qualifying point of the present proposal is to split
the overall management problem in two sub-problems at different
time scales.

Several aspects of the service requests are taken into account
in the present research. For example, as in [52], the presence of
timeouts is considered but, rather than proposing a mechanism for
adapting the timeout to avoid overload, the timeout is considered
as a parameter of the experimental scenario. The effect of timeout
values is analyzed to demonstrate the stability of the proposed
solution for different setups. Another significant characteristic of
the proposed model is considering the time divided into time-
slots (as in [53]). In [53], dividing time into discrete intervals
supports a dynamic programming approach where an input of
the optimization problem is the system status in the previous
time step and is a suitable model to capture the nature of the
VM allocation contracts (where a VM is purchased on an hourly
basis). However, the present paper extends the basic approach
of [53] through a time-receding algorithm that considers multiple
future time steps at once and provides a clear benefit in terms of
achieved QoS. The receding horizon approach used for the short-
term problem was first proposed in [10]; however, in the present
paper the receding-horizon technique is integrated with a long-
term workload management strategy and the model is extended by
embracing a multi-cloud vision.

Beside the effort to consider QoS in Cloud systems (consid-
ering both performance and SLA violations), common to most
literature, the present study takes directly into account also the
economic aspects of the problem of Cloud management, as in [7],
[67], [68], [69]. However, several existing papers rely on a
simplified economic model for example directly related to energy
consumption [7] or based on the knowledge of a standard per-
request cost [68]. The economic model in this paper is more
complex as it considers the dynamic aspects of VMs allocation,
that are to be purchased for periods of time several orders of
magnitude higher compared to the service time of a single request.

An additional qualifying point of the present study is that
the impact of resource contention on the infrastructure and its
effect on performance and SLA violations are consiered, similarly
to [5], [6], [7], [8]. In particular, the proposed model to handle
VM interactions and workload burstiness is inspired by [8], but

is extended from a simple performance model in a single data
center, to a core part of a simulator that can evaluate the QoS at
the level of multiple data centers, demonstrating the robustness
of the proposed algorithms. The model includes also a prediction
step as in [4]. However, the present study goes beyond the simple
application of standard prediction algorithms ( [4] exploits Markov
chains model) providing a detailed analysis of the impact of
the prediction error (e.g., due to noisy samples) on the overall
performance of the data center management.

Finally, he present research is characterized by an holistic
approach to the analysis that is almost non-existent in literature.
In particular, state-of-the-art solvers as in [53], [67] to evaluate the
problem from a mathematical point of view, are combined with the
implementation of a full-featured data center simulator as in [62],
[70] to capture elements of the model such as resource contention
that are not easy to include in the mathematical model (such as the
effect of resource contention); furthermore experiments on a real
infrastructure as in [71] are carried out to provide an additional
validation of our proposal. This extensive evaluation demonstrates
that the proposed approach can cope with a wide range of sce-
narios ensuring better performance compared to existing solutions
both in terms of QoS (by satisfying the SLAs) and in terms of
economic cost.

7 CONCLUSIONS

In this work a novel dual time scale receding horizon resource
allocation technique has been proposed. The approach is able to
minimize the execution cost of Cloud applications guaranteeing
the respect of multi-class SLAs. An extensive analysis that takes
into account multiple factors as different workloads and system
configurations has been provided demonstrating that this paper
solution outperforms major techniques available in the literature
or currently used by IaaS providers.

When compared with an Oracle with perfect knowledge of
the future the cost gap is about 7% on average. With respect to
heuristic solutions, cost savings range in [30, 80]%. If the multiple
solutions are compared in terms of SLA violations the benefit of
the adoption of the receding horizon control is evident, since in
the very worst case response time violation occurs in 4.259% of
times (versus 17.245% of other approaches). Furthermore SLA
violations can be reduced to no more 0.625% exploiting the
receding horizon characteristics, while the alternatives have worst
cases of up to 16.042% of SLA violations even with longer time
windows.

Finally, results have shown that in normal traffic conditions,
the best time scale length is 10 minutes while with spiky work-
loads the receding horizon is more effective considering a more
fine grained time scale, i.e., 5 minutes.

Future work will be devoted to the development of an adaptive
approach that will be able to switch between different time scales
according to the workload conditions.
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APPENDIX

Tw

Solution 1 2 3 4 5
Oracle 0.000% 0.000% 0.000% 0.000% 0.000%

S-t Algorithm 1.065% 0.428% 0.336% 0.255% 0.208%
Heu1 (40%, 50%) 0.000% 0.000% 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.000% 0.000% 0.000% 0.000% 0.000%

Heu2 (0.9, 1.2) 13.530% 13.356% 13.252% 12.975% 13.090%
Heu2 (0.8, 1.3) 13.646% 13.600% 13.565% 13.461% 13.368%

TABLE 7
Response Time percentage violations Tslot = 5 min, spiky traffic and

high noise.

Tw

Solution 1 2 3 4
Oracle 0.000% 0.000% 0.000% 0.000%

S-t Algorithm 1.065% 0.509% 0.289% 0.231%
Heu1 (40%, 50%) 0.000% 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.000% 0.000% 0.000% 0.000%

Heu2 (0.9, 1.2) 13.530% 13.391% 13.287% 13.032%
Heu2 (0.8, 1.3) 13.646% 13.634% 13.565% 13.287%

TABLE 8
Response Time percentage violations for Tslot = 5 min, spiky traffic and

low noise.

Tw

Solution 1 2 3
Oracle 0.000% 0.000% 0.000%

S-t Algorithm 4.259% 1.204% 0.625%
Heu1 (40%, 50%) 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.116% 0.208% 0.069%

Heu2 (0.9, 1.2) 15.509% 15.301% 13.681%
Heu2 (0.8, 1.3) 16.204% 15.602% 14.236%

TABLE 9
Response Time percentage violations for Tslot = 10 min, spiky traffic

and high noise.

Tw

Solution 1 2 3 4
Oracle 0.000% 0.000% 0.000% 0.000%

S-t Algorithm 3.102% 0.694% 0.532% 0.370%
Heu1 (40%, 50%) 0.000% 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.000% 0.000% 0.000% 0.000%

Heu2 (0.9, 1.2) 17.245% 17.083% 16.181% 16.042%
Heu2 (0.8, 1.3) 15.347% 15.440% 14.792% 14.560%

TABLE 10
Response Time percentage violations for Tslot = 10 min, spiky traffic

and low noise.

Tw = 1 Tw = 2 Tw = 3 Tw = 4 Tw = 5
Queue Dropped SLA Dropped SLA Dropped SLA Dropped SLA Dropped SLA

Length Q Req. [%] Viol. [%] Req. [%] Viol. [%] Req. [%] Viol. [%] Req. [%] Viol. [%] Req. [%] Viol. [%]

Short timeout
5 1.8676 0.00 1.5025 0.00 1.4378 0.00 1.2737 0.00 1.1881 0.00

10 0.9724 0.00 0.7626 0.00 0.7270 0.00 0.6314 0.00 0.5851 0.00
15 0.7707 0.00 0.5755 0.00 0.5464 0.00 0.4519 0.00 0.4048 0.00
20 0.6807 0.00 0.4927 0.00 0.4560 0.00 0.3683 0.00 0.3235 0.00

Long timeout
15 4.2243 0.00 3.515 0.00 3.4030 0.00 3.0594 0.00 2.8769 0.00
20 2.0720 0.00 1.6784 0.00 1.6124 0.00 1.4288 0.00 1.3406 0.00
25 1.5284 0.00 1.2336 0.00 1.1889 0.00 1.0518 0.00 0.9905 0.00
30 1.3334 0.03 1.0633 0.07 1.0215 0.00 0.9003 0.00 0.8398 0.00
35 1.2485 0.00 0.9458 0.02 0.8667 0.00 0.8236 0.00 0.7600 0.00
40 1.1950 0.03 0.9001 0.01 0.8426 0.00 0.7737 0.07 0.7062 0.00

TABLE 11
Sensitivity to queue length and timeout


