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Abstract—We target the problem of managing the power states of the servers in a Cloud Data Center (CDC) to jointly minimize the
electricity consumption and the maintenance costs derived from the variation of power (and consequently of temperature) on the
servers. More in detail, we consider a set of VMs and their requirements in terms of CPU and memory across a set of Time Slot (TSs).
We then model the consumed electricity by taking into account the VMs processing costs on the servers, the costs for transferring data
between the VMs, and the costs for migrating the VMs across the servers. In addition, we employ a material-based fatigue model to
compute the maintenance costs needed to repair the servers, as a consequence of the variation over time of their power states. We
then optimally formulate the Optimal Maintenance and Electricity Costs (OMEC) problem, which performs the allocation of VMs to the
servers for each TS. Our results, obtained over different scenarios, show that previous energy-aware solutions not considering the
maintenance costs tend to notably increase the total costs. On the other hand, OMEC is always able to minimize the sum of
maintenance plus electricity costs.

Index Terms—Cloud Computing, Cloud Data Center, Maintenance Costs, Electricity Costs, Fatigue, Energy-efficiency.

F

1 INTRODUCTION

D Ata Centers (DCs) have become a key aspect of the In-
formation and Communication Technology (ICT) sector.

Historically, the idea of exploiting DCs for computing tasks has
its roots during the first half of the 19th century, where different
prominent researchers define the concept of global brain [1], [2],
with the goal of providing encyclopedic ways of knowledge.
Since then, the incredible growth in the ICT sector, including
the improvements in HardWare (HW) manufacturing, as well as
the almost-infinite features provided by SoftWare (SW), have
completely revolutionized the possibility of exploiting DCs for
computing purposes. Nowadays, DCs are intensely widespread
worldwide to sustain a variety of applications, such as web brows-
ing, streaming, high definition videos, and cloud storage. Not
surprisingly, DCs generally adopt the cloud computing paradigm
[3], [4], according to which the virtualized applications (and
entire operating systems) are run over a set of distributed physical
servers, which may be even located in different continents. Hence,
the management of a Cloud Data Center (CDC) is an aspect of
fundamental importance for the DC owner (which is referred as a
content provider from here on).

In an era where the amount of computing information is
constantly growing [5], a primary need for a content provider is
to efficiently manage CDCs. Apart from the fixed costs, that are
related to the installation of CDCs equipment [6], a big worry for a
content provider is how to deal with the CDCs power consumption
and the related electricity costs [7]. In this context, the content
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provider has to face the large amount of power consumed by
its own CDCs. As a result, the decrease of power consumption
in CDCs has been traditionally a hot topic (see e.g. the survey
[8]). In this context, different works (see e.g., [9], [10]) target
the reduction of power for the servers in a CDC through the
management of their power states. Among them, the application of
a Sleep Mode (SM) state to a subset of servers is a very promising
approach [11], [12]. More in detail, thanks to the fact that the
traffic from users is not constant, and in general it varies across
the different hours of the day, it is possible to put in SM different
servers in a CDC, and to concentrate the users traffic on a subset
of servers, which remain in an Active Mode (AM). In this way, a
reduction of power, and consequently of the associated electricity
costs paid by the content provider, is achieved.

Although the application of SM is able to ensure lower
electricity costs compared to the case in which all the servers
are always powered on, the transitions between SM and AM,
especially when they are applied over periods of months and years,
tend to have a negative effect on the maintenance costs paid by the
content provider [13]. More in detail, when the server is put in SM,
a prompt decrease in the temperature of its components (especially
for CPU and memories) is observed [14]. Specifically, the temper-
ature drops from pretty high values (typically higher than 70◦-
80◦ [Celsius]) to the room temperature, which is typically cooled
and kept around 20◦ [Celsius]. On the other hand, the opposite
effect on the temperature is observed when the server passes
from SM to AM. The variation of temperature on the electronics
components, especially when it is repeated over time, tends to
introduce thermal fatigue effects [15], [16]. This phenomenon
is similar to the mechanical fatigue experienced by an airplane
fuselage, subject to cabin pressurization and depressurization over
different flights, which may deteriorate it in the long term [17].
In a similar way, the HW equipment, when it is subject to large
temperature transitions, tends to increase its failure rate. More
in detail, fatigue (and crack) effects are experienced e.g. by the
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solder joints connecting the CPU/memories to the motherboard
[18]. As a consequence, a server subject to frequent AM/SM
transitions will experience failure events more often, compared
to the case in which it is always left in AM, thus increasing the
associated maintenance costs in order to fix and/or replace the
failed components. In the worst case, the maintenance costs will
be even larger than the electricity saved from the application of
SM, thus producing a monetary loss to the content provider [13].

In this context, different natural questions arise, such as:
What is the impact of the maintenance costs on the total ones?
Is it beneficial to trade between electricity consumption and
maintenance costs? How to optimally formulate the problem?
How to properly evaluate it? The goal of this paper is the shed
light on these issues. More in detail, we first present a simple
(yet effective) model to compute the maintenance costs, given
the variation over time of the power states for a set of servers.
In addition, we adopt a detailed model to compute the power
consumed by the CDC. Specifically, our power model takes into
account the CPU-related electricity costs of the servers, the costs
for transferring data among the servers, and the costs for migrating
the Virtual Machines (VMs) running on the servers. We then
optimally formulate the problem of jointly reducing the CDC
electricity consumption and the related maintenance costs. Our
results, obtained by optimally solving the proposed problem on a
realistic case study, clearly show that our solution is able to wisely
trade between maintenance and electricity costs in order to provide
monetary savings for the content provider. On the other hand, we
show that energy-aware strategies, targeting solely the electricity
bill reduction, tend to notably increase the maintenance costs. To
the best of our knowledge, none of the previous works in the CDC
research field has conducted a similar analysis.

Although the results reported in this paper are promising, we
point out that other costs than the ones considered here may
increase the maintenance bill. Specifically, the cost of regular
updates, due to HW/SW upgrades, may have an impact on the
maintenance costs paid by the content provider. In addition, the
adoption of renewable energy sources may also vary the electricity
bill. Both these issues, which are not considered in this work, can
be potentially added in our framework.

The rest of the paper is organized as follows. Related works
are reviewed in Sec. 2. The reference CDC architecture is briefly
overviewed in Sec. 3. Sec. 4 presents the considered models
to compute the maintenance costs and the electricity costs in a
CDC. The problem of jointly managing the electricity and the
maintenance costs triggered by fatigue processes is formulated in
Sec. 5. The considered scenarios and the input parameters to our
solution are detailed in Sec. 6. Results are reported in Sec. 7.
Finally, Sec. 8 concludes our work.

2 RELATED WORK

In the following, we will briefly discuss the main literature in
CDC related to our work. We first describe solutions targeting
the management of energy and/or electricity in CDCs. Then, we
move our attention to researches targeting the management of
CDC failures.

2.1 Energy and Electricity Management in CDCs
Features such as electricity, power, as well as computing and
network management tasks are addressed in [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29]. A detailed overview of

energy consumption models in Data Center (DC) is provided
by Dayarathna et al. in [19]. In this context, several works
target the management of a CDC by: i) providing algorithms for
VM live migrations [20], [21], [22], ii) considering distributed
server/CDC applications [23], [24], [25], [26], iii) focusing on
business process management [27], and iv) detailing memory and
storage management solutions [28], [29].

Focusing on the aspect of VM live migrations, Voorsluys et al.
[20] adopt live migration of VMs, with to goal of reducing energy
in the CDC while guaranteeing the performance to applications.
However, this work does not consider the server maintenance
costs. Moreover, the costs of VMs migration and as well as data
transferring between VMs in a CDC environment are not taken
into account. Moreover, Liu et al. in [22] present a cost-aware
learned knowledge method and an adaptive network bandwidth
management, by applying VM live migration estimation to achieve
power saving in the CDC. In addition, Soni et al. in [23] derive
computing cost models for the CDC such that they try to cover the
VMs’ over/under loadings based on priority and states. Indeed,
their proposed algorithm is able to manage load distribution
among various applications running in each VM. Besides, Bi et al.
in [25] present a queue-aware multi-tier applications model inside
the CDC. In addition, they computed the number of servers that
must be allotted to each tier in order to meet the response time
per application per server. Moreover, they considered the CPU
resources per-VM in the CDC. However, a live VMs transferring
is not performed. On the other hand, Han et al. in [26] present an
adaptive cost-aware elasticity method in order to scale up/down
multi-tier cloud applications to meet run-time varying application
demands. Nevertheless, the complexity of the proposed model in
computational management is quadratic per-application. Focusing
then on the memory and storage management, Song et al. in [29]
employs power performance information to estimate the desired
storage and memory parameters in order to preserve energy
and costs in the CDC. It is important to note that their quasi-
analytical performance modeling can be accurate, but it requires a
deep understanding of each individual application running on the
VM and the server. Therefore, several information is preliminary
needed. As a result, the pre-processing time of the problem may
be increased.

2.2 Failure Management in CDCs

Server failure is recognized as one of the costs for the cloud by
Greenberg et al. [30]. In this context, different works target the
reduction of the impact of the failure events by proposing efficient
DC architectures. In particular, Guo et al. propose Dcell [31],
a scalable and recursive architecture which is also fault-tolerant.
Greenberg et al. [32] present VL2, a scalable and flexible DC
network which is tolerant to failures experienced by networking
equipment. Guo et al. [33] details BCube, an architecture for
modular DCs, which is able to guarantee a graceful performance
degradation as the server failure rate increases. Moreover, ac-
cording to Kliazovich et al. [34], when the DC temperatures
are not kept within their operational limits the HW reliability
is decreased, thus bringing to a potential violation of Service
Level Agreements (SLAs). In addition, the optimization of thermal
states and cooling system operation is recognized as a challenge
by Beloglazov et al. [10]. Moreover, a detailed failure analysis
of failures in a DC is performed by Gill et al. [35]. However,
their work is mainly focused on network devices and not on



SUBMITTED TO IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 3

Pod

Data Center Network Core

SwitchSwitch

Network 
Manager

Allocation 
Manager

PS

Switch Switch

Switch Switch

PS PS PS PS

Switch Switch

Switch Switch

PS PS PS

Physical
Server

H
y
p

e
rv

is
o
r

VMVM

VMVM

VMVM

Pod

Data Traffic
Configuration Data

Fig. 1. Cloud Data Center Architecture.

servers like in our case. Eventually, a characterization of the HW
components of the servers in terms of reliability is performed
by Vishwanath et al. [36]. In particular, this work reports that
the failure in one of the server HW components is a common
event experienced in large DCs. In addition, Zhang et al. [37]
propose Venice, an availability-aware framework able to guarantee
availability requirements to the service providers. Finally, Jhawar
and Piuri [38] propose an approach to measure the effectiveness
of fault tolerance mechanisms in Infrastructure as a Service (Iaas)
cloud, by also providing a solution to select the best mechanism
satisfying the users requirements.

3 CLOUD DATA CENTER ARCHITECTURE

Fig. 1 reports the main building blocks of the considered CDC
architecture. More in detail, the CDC is composed of VMs,
hypervisors, Physical Servers (PSs), switches and management
entities. Each VM is hosted in a PS. The set of VMs in a PM
is managed by an hypervisor. Moreover, the PSs are grouped in
Pods. The interconnection between PSs in the same Pod is realized
by means of a set of redundant switches and physical links. In
addition, a DC network, again composed of switches and physical
links, provides connectivity among the different Pods. Moreover,
a centralized network manager (top left part of the figure) is then
in charge of managing the set of networking devices, e.g. by
providing software-defined functionalities. Finally, an allocation
manager (mid left part of the figure) distributes the VMs over the
PSs, by ensuring that each VM receive the required amount of
CPU and memory from the PS hypervisor.

Focusing in more detail on the tasks performed by the alloca-
tion manager, this element is in charge of running the proposed
VMs allocation algorithm, which is able to trade between elec-
tricity costs and maintenance ones by acting on the PSs power
states. In our work, we assume that time is discretized in Time
Slots (TSs), and that the allocation algorithm is run for every TS.
Given the power state of the PSs at previous TS (AM or SM), the
allocation of VMs at previous TS, and the VMs requests in terms
of CPU and memory for the current TS, the allocation manager
computes the allocation of VMs for the current TS. Eventually,
the allocation manager notifies the servers that need to be put in
AM/SM for the current TS. In case a server was in AM at previous
TS and needs to be put in SM at current TS, the allocation manager
interacts with the server operating system to gracefully halt the
machine.

4 COSTS MODELS

We first consider the computation of the maintenance and elec-
tricity costs for a generic TS duration, denoted with δ [h]. We

initially present the model to compute the maintenance costs in a
CDC subject to fatigue effects. Next, we detail the model the com-
pute the electricity costs. Finally, we discuss the interdependence
between the two models.

4.1 Maintenance Cost Model
We first introduce a failure model in order to take into account
the impact of power transitions on the PS. We start from [13],
in which authors present a generic model that can be applied to
computing (and networking) equipment. We focus on a generic PS
i in the CDC. The total Failure Rate (FR) for PS i is defined as:

φTOTi , φAMi

(
1− τSMi

T

)
︸ ︷︷ ︸

FR due to AM state

+ φSMi · τ
SM
i

T︸ ︷︷ ︸
FR due to SM state

+
ηi
NF
i︸︷︷︸

FR due to power transitions
(1)

where φAMi [1/h] is the Failure Rate (FR) of the PS when it
is always kept in AM (i.e., no SM is applied), τSMi [h] is the
amount of time the PS has spent in SM (from the beginning of
the simulation up to current TS), T [h] is the total amount of
time under consideration, φSMi [1/h] is the server FR when it is
always left in SM (i.e. no AM is applied), ηi [1/h] is the frequency
of power state transitions between SM and AM, and NF

i is the
number of AM-SM cycles before a failure occurs. As reported
in [13], the main assumptions of this model are that the failures
are assumed to be statistically independent of each other and that
their effect is additive. By observing in more detail Eq. (1), we
can notice two different effects. Specifically, when the amount of
time in SM τSMi is increased, the resulting FR φTOTi tends to the
value φSMi , which is, in general, lower than φAMi (thanks to the
fact that the temperature in SM is much lower compared to the
AM case). On the other hand, the number of transitions between
AM and SM tends to increase with time, thus increasing the last
term of Eq. (1), and consequently the total FR φTOTi . This last
term tends to dominate the FR, especially when the amount of
time under consideration T is in the order of months/years.

In the following, we introduce a simple metric, called Accel-
eration Factor (AF), to better capture the model features. More in
detail, the AF, which is a metric commonly adopted in material
fatigue researches [16], [39], is defined as the ratio between the
observed FR φTOTi and the FR by keeping the PS always in AM,
i.e., φAMi . More formally, we have:

AFTOT
i ,

φTOT
i

φAM
i

= 1−
(

1−AFSM
i

) τSM
i

T︸ ︷︷ ︸
Lifetime increase (short term)

+ Ψi · ρi︸ ︷︷ ︸
Lifetime decrease (long term)

(2)
where AFSMi is defined as φSMi

φAM (which is typically lower than
1 as the FR in SM is lower than the one in AM), ρi is the total
number of power state transitions up to TS i and Ψi is a weight
parameter. When AFTOTi < 1 the PS lifetime (i.e., the time
between two failure events) is higher compared to the case in
which the PS is always left in AM. On the other hand, when
AFTOTi > 1 the lifetime is lower compared to the AM case. The
value of AFTOTi gives exactly the amount of lifetime reduction
for the PS, e.g., ifAFTOTi = 30, the PS will experience a lifetime
reduction of 30 times compared to the case in which it is always
kept in AM. Clearly, the application of different power states has
an impact on the values of AFTOTi . More in detail, when the
observation period (i.e. the time passed from the beginning of
the experiment up to the current time slot) is in the order of
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months/years, the term Ψi · ρi becomes predominant, i.e., the
application of different power states tends to increase ρi, and
consequently the AF. Finally, we can note that the AF is influenced
by parameters τSMi and ρi, which depend on the specific policy
used to put the PS in SM/AM, and by parameters AFSMi and
Ψi, which instead depend on the materials used to build the
PS (and their strength against fatigue effects). In principle, PSs
whose components exhibit higher values of Ψi are more prone
to fatigue effects, and consequently to lifetime degradation. The
actual setting of parameters AFSMi and Ψi will be discussed in
more detail in Sec. 6.

Finally, we compute the total maintenance costs for all the PSs
in the CDC as:

CTOTM = KR · δ ·
∑
i∈M

(
AFTOTi · φAMi

)
[$] (3)

whereM is the set of PSs in the CDC, KR [$] is the reparation
cost for one PS (i.e., the cost for fixing the PS without the need to
replace it with a new one), and δ is the duration of the considered
TS. In this work, we assume that the PS failures can be repaired
by, e.g., the substitution of only the failed components with new
ones. We believe that this assumption is more realistic compared
to the case in which a PS is always replaced with a new one
each time a failure is experienced. Finally, we stress the fact that
the total maintenance costs CTOTM may include also the costs for
HW upgrades and SW updates, as well as scheduled maintenance
operations. These terms can be added as additional costs in Eq. (3),
and they are left for future work.

4.2 Electricity Cost Model
We model the electricity costs as the sum of three different
contributions: i) the data processing costs on the PSs, ii) the data
transferring costs among the VMs located on different PSs, and
iii) the costs for migrating the VMs across different PSs. The
following subsections detail the different cost components.

4.2.1 Data Processing Costs
We adopt the assumption of [10], according to which the power
consumption of each PS in AM is proportional to the CPU
utilization due to data processing tasks running on the hosted VMs.
On the other hand, when the PS is in SM, we assume that its power
consumption is negligible. We denote the total electricity costs due
to processing tasks with CPROCE . More formally, we have:

CPROC
E = KE · δ

∑
i∈M

[
ui

(
PMAX
i − P IDLE

i

)
+Oi · P IDLE

i

]
(4)

where KE [$/Wh] is the hourly electricity cost, δ [h] is the time
slot duration, ui is the CPU utilization of the server at current TS
(ranging between 0 and 1), PMAX

i [W] is the power consumption
of PS i when its CPU is fully utilized, P IDLEi [W] is the power
consumption of the PS when its CPU is idle, and Oi is the power
state of PS i (0 if it is in SM, 1 otherwise). Note that, when the PS
is in SM (i.e. Oi=0), it holds that ui = 0.

4.2.2 Data Transferring Costs
We then consider the electricity costs derived from the exchange
of data between VMs running on different PSs. By adopting a
common assumption in the literature [40], [41], we assume that
the total costs due to data transferring are the sum of a static term,
which considers the power consumed by the network interfaces

of the PS, and a linear one, which instead takes into account the
amount of data transferred between VMs. The total costs due to
migrations, which are denoted with CTRE , are then expressed as:

CTR
E = KE · δ

∑
i∈M

Oi · PTR−IF
i +

∑
j∈M

∑
k,w∈N

dijkw · P
TR−NET
ij


(5)

where N is the set of VMs in the CDC, PTR−IFi [W] is the
power of the network interfaces of PS i, dijkw [Mb/h] is the hourly
amount of data traffic exchanged between VM k on PS i and VM
w on PS j (which is equal to 0 if either PS i or PS j is in SM),
and PTR−NETij [W/Mb] is the power consumption consumed for
transferring one [Mb] of information between PS i and PS j (by
assuming that VM k is hosted in PS i, and that VM w is located
in PS j).

4.2.3 Migration Costs
Finally, we consider the costs that are paid when the VMs are
moved across the PSs. For example, a typical event requiring VM
migration is the activation of SM on a PS. Before the PS applies
SM, all the VMs running on it have to be moved to other PS(s).
We assume that the VM migration involves the whole copy of the
VM memory from the old PS to the new one.1 Eventually, the
process of copying the memory requires an additional amount of
overhead power, which needs to be properly taken into account.
This amount of power is driven by the fact that VM migration
introduces a performance degradation, which may be even in the
order of 10% according to [42]. The total migration costs, which
are denoted with CMIG

E , are then defined as:

C
MIG
E = KE ·

∑
i,j∈M

∑
k∈N

mijk

(
µk · PTR−NETij + P

OH
i + P

OH
j

)
(6)

where mijk is a binary variable taking value 1 if the k-th VM on
PS i is migrated on PS j (0 otherwise), µk [Mb] is the amount
of memory of the VM k, PTR−NETij [W/Mb] is again the power
consumption consumed for transferring one [Mb] of information
between PS i and PS j, POHi [W] and POHj [W] are the amount
of overhead power consumed during the migration process by PS
i and j, respectively.

4.2.4 Total Electricity Costs
The total electricity costs consumed by the CDC are then com-
puted as the sum of the considered costs:

CTOTE = CPROCE + CTRE + CMIG
E [$] (7)

4.3 Interdependence Between The Costs Models
The presented electricity and maintenance costs models are strictly
independent of each other. Let us consider for simplicity the case
in which a generic PS i was in AM at previous TS and is put in SM
at current TS. In this case, the number of power state transitions
ρi is increased. This inevitably increases the PS AF reported in
Eq. (2), and consequently the reparation costs in Eq. (3). On the
other hand, by imposing the SM state, Oi is set to 0. Therefore,
the data processing costs in Eq. (4) and the data transferring costs
in Eq. (5) are equal to 0 for PS i. On the other hand, the VMs
running on the PS will be moved to other PSs, thus increasing

1. The actual amount of exchanged data may be slightly higher than the size
of memory, due to the retransmission of dirty memory pages. However, the
typically small size of the active page set w.r.t. the global memory space of the
VM allows us to neglect this effect.
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the migration costs in Eq. (6). In a similar way, the power state
change from SM in the previous TS to AM in the current time slot
also tends to increase the reparation costs, while also increasing
the electricity costs.

In this context, a natural question is: How to set the power
states for the whole set of PSs in the CDC in order to trade between
the costs? To answer this question, we optimally formulate in
the next section the problem of minimizing the electricity and
maintenance costs in a CDC.

5 PROBLEM FORMULATION

We first consider the extension of our cost model by introducing
the set of TSs, which is denoted by T . Then, for each TS
t ∈ T , we target the problem of jointly managing maintenance
and electricity costs in the CDC. We initially detail each set of
constraints, and then we provide the entire formulation.

5.1 Maintenance Costs Constraints
We first consider the constraints related to the computation of the
maintenance costs. We initially introduce the variable τALL(t) [h]
to compute the total amount of time elapsed from the initial TS up
to TS t. τALL(t) is computed as:

τALL(t) = τALL(t− 1) + δ(t) (8)

where τALL(t− 1) [h] is the total elapsed time up to TS (t− 1)
and δ(t) [h] is the duration of current TS t.

We then denote with τSMi (t) [h] the total time in SM for PS i
up to TS t. τSMi (t) is then computed as:

τSM
i (t) = τSM

i (t− 1) + δ(t) [1−Oi(t)] , ∀i ∈M (9)

where τSMi (t − 1) [h] is the total time in SM for PS i up to TS
(t − 1), and Oi(t) [units] is a binary variable for the power state
of PS i, taking value 1 if PS i is in AM at TS t, 0 otherwise.

We then introduce the binary variable zi(t) [units], which
takes value 1 if PS i has experienced a power state transition
(from SM to AM, or the opposite) between TS t and TS (t − 1),
0 otherwise. zi(t) is formally defined as:

zi(t) =

{
Oi(t)−Oi(t− 1) if Oi(t− 1) == 0

Oi(t− 1)−Oi(t) if Oi(t− 1) == 1
, ∀i ∈M (10)

We then introduce the integer variable ρi(t) [units], which
computes the total number of transitions for PS i up to TS t:

ρi(t) = ρi(t− 1) + zi(t), ∀i ∈M (11)

where ρi(t− 1) [units] is the total number of transitions for PS i
up to TS (t− 1).

In the following, we denote with AFTOTi (t) [units] a contin-
uous variable storing the value of AF for PS i up to TS t. The total
AF is computed as:

AFTOT
i (t) = 1−

(
1−AFSM

i

) τSM
i (t)

τALL(t)
+ Ψi · ρi(t), ∀i ∈M

(12)
where AFSMi [units] is the AF of the PS when it is always kept
in SM, and Ψi [units] is the weight parameter for the number of
power state transitions ρi(t) [units].

Finally, we introduce the variable CTOTM (t) [$] to store the
maintenance costs of the CDC up the TS t. The total maintenance
costs are computed as:

CTOT
M (t) = CTOT

M (t− 1) +KR · δ(t)
∑
i∈M

AFTOT
i (t) · φAM

i (13)

whereCTOTM (t−1) [$] are the maintenance costs up to TS (t−1),
KR [$] is the reparation cost for one PS, and φAMi [1/h] is the FR
of PS i when it is always kept in AM.

5.2 Electricity Costs Constraints

In the following, we consider the computation of the different
terms of the electricity costs. More in detail, we start by computing
the CPU utilization of each PS. We denote with ui(t) [units]
a continuous variable storing the CPU utilization of PS i at
TS t. ui(t) [units] is expressed as the summation of the CPU
consumed by the VMs running on PS i, normalized by the total
CPU available on the PS. More formally, we have:

ui(t) =
∑
k∈N

xik(t) · γk(t)

γMAX
i

, ∀i ∈M (14)

where xik(t) [units] is a binary variable taking the value 1 if
VM k is assigned to PS i (0 otherwise), γk(t) [units] is the CPU
request of VM k at TS t, and γMAX

i [units] is the maximum CPU
utilization of PS i.

Given the CPU utilization ui(t) [units], we then compute the
total electricity costs due to CPU processing at TS t, which are
denoted as CPROCE (t) [$]. The total processing costs are defined
as:

C
PROC
E (t) = KE ·δ(t)

∑
i∈M

[
ui(t)

(
P
MAX
i − P IDLEi

)
+Oi(t) · P IDLEi

]
(15)

where KE [$/Wh] is the electricity cost per Watt-hour, PMAX
i

[W] is the maximum power consumption of the PS and P IDLEi

[W] is the idle power consumption of the PS.
In the following step, we compute the amount of data ex-

changed between VM k located on PS i and VM k located on PS
w at TS t, which we denote with dijkw(t) [Mb/h]. This variable is
equal to the amount of data traffic Dkw(t) [Mb/h] exchanged by
the VMs k and w at TS t, if k and w are located on different PSs.
On the other hand, if k and w are located on the same PS, dijkw(t)
is set to 0. More formally, we have:

dijkw(t) =

{
pijkw(t) ·Dkw(t) if i 6= j

0 if i = j

,∀i, j ∈M,∀k,w ∈ N (16)

where pijkw(t) = xik(t)·xjw(t) is a non linear product. In order to
linearize this term, we introduce the following linear constraints:

pijkw(t) ≤ xik(t), ∀i, j ∈M,∀k,w ∈ N (17)

pijkw(t) ≤ xjw(t), ∀i, j ∈M,∀k,w ∈ N (18)

pijkw(t) ≥ xik(t) + xjw(t)− 1, ∀i, j ∈M,∀k,w ∈ N (19)

pijkw(t) ≥ 0, ∀i, j ∈M,∀k,w ∈ N (20)

The total data transferring costs at TS t, denoted as CTRE (t),
are then defined as:

C
TR
E (t) = KE ·δ(t)

∑
i∈M

Oi(t) · PTR−IFi
+

∑
j∈M

∑
k,w∈N

d
ij
kw

(t) · PTR−NET
ij


(21)

where PTR−IFi [W] is the power consumption of network inter-
faces of PS i, and PTR−NETij [W/Mb] is the power cost to transfer
one [Mb] of data between PS i and PS j.

In the next part, we compute the costs due to VM migrations
across the PSs. Specifically, we first introduce the binary variable
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TABLE 1
Main Notation

Symbol Definition Type - Unit Appears in Eq.
M (|M|) Set (Number) of PSs - -
N (|N |) Set (Number) of VMs - -
T (|T |) Set of TSs - -

τALL(t− 1) Total time up to TS (t− 1) [h] (8),(12)
δ(t) Current TS duration [h] (8),(9),(13),(15),(21)

τSMi (t− 1) Total amount of time in SM for PS i up to TS (t− 1) [h] (9),(12)
Oi(t− 1) Power state of the PS at TS (t− 1): 1 AM, 0 SM [units] (10)
ρi(t− 1) Total number of transitions for PS i up to TS (t− 1) Integer - [units] (11)
AFSMi AF always in SM for PS i [units] (12)

Ψi Weight for power state transitions for PS i [units] (12)
CTOTM (t− 1) Total maintenance costs for the CDC up to TS (t− 1) [$] (13)

KR PS maintenance costs [$] (13)
φAMi FR for PS i always in AM [1/h] (13)
γk(t) CPU utilization of VM k at TS t [units] (14),(27)
γMAXi Maximum CPU utilization for PS i [units] (14),(27)

In
pu

tP
ar

am
et

er
s KE Electricity cost for one [Wh] [$/Wh] (15),(21),(23)

PMAXi Maximum power consumption for PS i [W] (15)
P IDLEi Idle power consumption for PS i [W] (15)
Dkw(t) Amount of data exchanged between VM k and VM w [Mb/h] (16)
PTR−IFi Power consumption of the network interfaces for PS i [W] (21)
PTR−NETij Power consumption per [Mb] of information exchanged

between PS i and PS j
[W/Mb] (21),(23)

xik(t− 1) VM k to PS i assignment at TS (t− 1) [units] (22)
POHi Overhead power for PS i [W] (23)
µk(t) Memory consumption of VM k at TS t [Mb] (23),(28)
µMAXi Maximum memory consumption on PS i [Mb] (28)
τALL(t) Total time up to TS (t) [h] (8),(12)
τSMi (t) Total amount of time in SM for PS i up to TS t Continuous - [h] (9),(12)
Oi(t) Power state for PS i: 1 AM, 0 SM Binary - [units] (9),(10),(15),(21), (26)
zi(t) Power transition for PS i: 1 if the PS has experienced a

transition between t and (t− 1), 0 otherwise
Binary - [units] (10),(11)

ρi(t) Total number of transitions for PS i up to TS t Integer - [units] (11),(12)
AFTOTi (t) Total AF for PS i at TS t Continuous - [units] (12),(13)
CTOTM (t) Total maintenance costs for the CDC up to TS t Continuous - [$] (13)
ui(t) CPU utilization for PS i at TS t Continuous - [units] (14),(15)

Va
ri

ab
le

s

xik(t) VM k to PS i assignment at TS t: 1 if VM k is assigned
to PS k at TS t, 0 otherwise

Binary - [units] (14),(17),(18),(19),(22),(25),
(26),(27),(28)

pijkw(t) 1 if VM k is assigned to PS i and VM w is assigned to
PS i (0 otherwise)

Binary - [$] (16),(17),(18),(19),(20)

CPROCE (t) Data processing costs at TS t for the CDC Continuous - [$] (15),(24)
dijkw(t) Amount of data exchanged between VM k on PS i and

VM w on PS j at TS t
Continuous -
[Mb/h]

(16),(21)

CTRE (t) Data transferring costs at TS t for the CDC Continuous - [$] (21),(24)
mijk(t) Migration of VM k from PS i to PS j at TS t: 1 if VM

k is migrated from PS i to PS j at TS t, 0 otherwise
Binary - [units] (22),(23)

CMIGE (t) Migration costs at TS t for the CDC Continuous - [$] (23),(24)
CTOTE (t) Total electricity costs for the CDC at TS t Continuous - [$] (24)

mijk(t), which takes value 1 if VM k is moved from PS i to PS j
at TS t, 0 otherwise. We setmijk(t) with the following constraint:

mijk(t) =

{
xik(t− 1) · xjk(t) if i 6= j

0 if i = j

∀i, j ∈M,∀k ∈ N (22)

We then store the total VM migration costs at TS t in the
variable CMIG

E (t), which is defined as:

C
MIG
E (t) = KE ·

∑
i,j∈M

∑
k∈N

mijk(t)
[
µk(t) · PTR−NETij + P

OH
i + P

OH
j

]
(23)

where µk(t) [Mb] is the amount of allocated memory to VM k
at TS t, while POHi [W] and POHj [W] are the overhead power
consumption of PS i and PS j due to VM migrations, respectively.

The total electricity costs are then computed as the sum of the
current costs, plus the costs at previous TS CTOTE (t− 1) [$]:

CTOTE (t) = CTOTE (t− 1) +CPROCE (t) +CTRE (t) +CMIG
E (t)

(24)

5.3 Additional Constraints

We then introduce a set of additional constraints in our problem.
Specifically, we first impose than each VM has to be allocated to
only one PS: ∑

i∈M
xik(t) = 1, ∀k ∈ N (25)

In addition, when a VM is assigned to a PS, the PS has
to be powered on. We ensure this condition with the following
constraint: ∑

k∈N
xik(t) ≤ |N | ·Oi(t), ∀i ∈M (26)

where on the right side we have exploited the Big-M method by
multiplying Oi(t) for |N | (see [48] for the explanation of the
general Big-M methodology).

In the following, we consider the fact that the CPU consumed
by the VMs running on each PS i has to be lower than the CPU
available on the PS. More formally, we have:∑

k∈N
γk(t) · xik(t) ≤ γMAX

i , ∀i ∈M (27)
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TABLE 2
Settings for the Input Parameters

Parameter Value Reference Appears in Eq.
|M| {3,5} - -
|N | {9,11,13,15} - -
T 1 TS every 15 [min] for |T | = 1 [year] - -

τALL(t− 1) Given by previous TS (set to 0 [min] for the initial TS) - (8),(12)
δ(t) 15 [min] [43] (8),(9),(13),(15),(21)

τSMi (t− 1) Given by previous TS (set to 0 [min] for the initial TS) - (9),(12)
AFSMi 0.5 ∀i ∈ M Arrenhius Law with parame-

ters from [14], [44]
(12)

Ψi [0.01-0.1] ∀i ∈ M Computed from φAMi in [13] (12)
CTOTM (t− 1) Given by previous TS (set to 0 [$] for the initial TS) - (13)

KR 380 [$] (reparation costs requiring two crew members,
each of them costing 190 [$])

[13] (13)

φAMi 1.14× 10−5 [1/h] ∀i ∈ M [13] (13)
γk(t) Traces from e-Health CDC [43] (14),(27)
γMAXi Maximum utilization, corresponding to 2x6 cores Xeon

5760 @ 2.93 MHz ∀i ∈ M
[43] (14),(27)

KE 0.00016 [$/Wh] [13] (15),(21),(23)
PMAXi 328.2 [W] ∀i ∈ M [45] (15)
P IDLEi 197.6 [W] ∀i ∈ M [45] (15)
Dkw(t) Traces from e-Health CDC [43] (16)
PTR−IFi 42.7 [W] [46], [47] ∀i ∈ M (21)
PTR−NETij Dataset from [43] [43] (21),(23)
xik(t− 1) Given by previous TS (set to 0 ∀i ∈ M, k ∈ N for

the initial TS)
- (22)

POHi 3.28 [W] (1% of PMAXi ) ∀i ∈ M [43] (23)
µk(t) Traces from e-Health CDC [43] (23),(28)
µMAXi 128 [GB] ∀i ∈ M [45] (28)
CTOTE Given by previous TS (set to 0 [$] for the initial TS) - (24)

Similarly, we impose a limit also for the amount of memory
consumed by the VMs on each PS:∑

k∈N
µk(t) · xik(t) ≤ µMAX

i ∀i ∈M (28)

where µMAX
i [Mb] is the maximum memory consumption al-

lowed on PS i.

5.4 Overall Formulation
The OPTIMAL MAINTENANCE AND ELECTRICITY COSTS

(OMEC) problem, which aims at minimizing the costs for each
TS t, is formulated as follows:

min CTOT (t) =
[
CTOTM (t) + CTOTE (t)

]
(29)

subject to:

Maintenance Costs Computation (8)− (13),
Electricity Costs Computation (14)− (24),
VM Allocation Constraint (25),
PS Activation Constraint (26),
Maximum CPU Capacity (27),
Maximum Memory Capacity (28).

(30)

under control variables: xij(t) ∈ {0, 1}, Oi(t) ∈ {0, 1}.
Finally, Tab. 1 reports the main notation introduced so far.

6 SCENARIOS AND INPUT PARAMETERS

Tab. 2 reports the values of the input parameters, their references,
and the equations of the OMEC model where they appear. More
in detail, we consider different settings for the number of PSs
|M| and VMs |N |. In addition, a total period of time |T | equal to
1 [year] is considered. We assume that the TS duration is equal to
δ(t) = 15 [min]. Moreover, the failure rate of a PS in AM φAMi
is set equal to 1.14× 10−5 [1/h], in accordance to the FR values
expressed in Failure in Time (FIT) in [13].

In order to set the AF in SM AFSMi , we recall that this term
is equal to φSMi /φAMi , where φSMi [1/h] is the FR in SM, which
is expressed by the Arrhenius law [49]:

φSMi = e
−Ea

(K·TSM ) (31)

where Ea [joule/mol] is the activation energy, K =
8.314472 [joule / (mol kelvin)] is the Boltzmann constant, and
TSM [kelvin] is the temperature in SM. In our case, we have set
Ea = 30500 [joule/mol] in accordance to the values measured for
chip components in [44], TSM = 303.15 [kelvin], corresponding
to 30 [Celsius], in accordance to the real measurement performed
on a PS in [14]. As a result, we get AFSMi ≈ 0.5.

In the following, we focus on the Ψi parameter, which instead
is the weight for the power state transitions ρi(t). More in
depth, Ψi is defined as Ψi = 1/(φAMi NF

i ) where NF
i is the

number of cycles to failures. In our case, we consider the interval
NF
i = [8.77 · 105 − 8.77 · 106]. In particular, we set NF

i to
values higher than the ones measured under stressful conditions,
i.e., between a maximum and a minimum temperature (such as
the testing methodology of [50]), due to the fact that we are only
applying a SM procedure, which is supposed to be less aggressive
for the lifetime of the components than the test in [50]. As a result,
we consider a range of Ψi values in the interval [0.01− 0.1].

Given these parameters, we then focus on a scenario in which
the VMs requests in terms of CPU γk(t), memory µk(t) and
exchanged data Dkw(t) vary across the set of TSs. In particular,
these input parameters are derived from real measurements from
an e-Health CDC [43]. Moreover, the dimensioning of the PSs in
terms of power, CPU, and memory is performed considering a re-
alistic server machine [43], [45]. Finally, the remaining parameters
are set in accordance to Tab. 2.

7 PERFORMANCE EVALUATION

We compare the OMEC model against a classical OPTIMAL

CONSOLIDATION (OC) strategy, which is described in [9] and
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TABLE 3
Costs breakdown after 1, 6 and 12 months for OMEC, OC, and OEA with |M| = 5, and |N | = 15.

Algorithms CPROC
E (T ′) [$] CTR

E (T ′) [$] CMIG
E (T ′) [$] CTOT

E (T ′) [$] CTOT
M (T ′) [$] CTOT (T ′) [$] Ranking

15
V

M
s

T ′ =
1 [month]

OC 140.09 90.86 26.04 256.99 25.74 282.73 #3
OEA 140.83 80.72 9.19 230.73 20.48 251.18 #1
OMEC 141.32 82.16 9.74 233.20 24.39 257.60 #2

T ′ =
6 [months]

OC 851.67 552.23 157.64 1561.82 509.51 2071.33 #1
OEA 907.71 553.27 78.63 1539.74 694.62 2234.36 #3
OMEC 926.29 559.44 77.90 1563.81 642.27 2206.08 #2

T ′ =
12 [months]

OC 1703.24 1102.25 315.25 3121.48 1859.57 4981.05 #3
OEA 1897.79 1134.01 158.09 3190.49 1740.59 4931.08 #2
OMEC 1916.37 1140.18 157.36 3214.56 1510.92 4725.48 #1

optimally formulated in [51]. The goal of OC is to minimize
the energy consumed by PSs in each TS. More formally, the OC
problem can be sketched as follows:

min CPROCE (t) (32)

subject to: (14), (15), (25), (26), (27), (28) and the control
variables xij(t) ∈ {0, 1}, Oi(t) ∈ {0, 1}. In addition, we
consider as an additional term of comparison the energy-aware
approach of [43], which we denote as OPTIMAL ELECTRICITY

COSTS ALGORITHM (OEA). The goal of OEA is to minimize the
total electricity costs consumed by the PSs, including the terms
due to data transferring and migrations. More formally, OEA can
be sketched with the following optimization problem:

min CTOTE (t) (33)

subject to: (14)-(24), (25), (26), (27), (28) and the control variables
xij(t) ∈ {0, 1}, Oi(t) ∈ {0, 1}.

The OMEC, OEA and OC formulations have been coded with
the AMPL software, and solved over the considered scenarios
with the CPLEX optimization solver on a powerful server with
16 cores and 24 [GB] of RAM. Unless otherwise specified, we
have initially considered a set of |M| = 5 PSs and |N | = 15
VMs. In this way, we have focused on a scenario in which
the PSs are always pretty loaded. We have then considered the
impact on the costs by running OMEC, OEA and OC for
|T | = 1 [year], and we have selected the obtained solutions after
T ′ = 1, 6, 12 [months], respectively. Tab. 3 reports the obtained
results, by detailing the different costs and the final ranking in
terms of total costs CTOTE (T ′). Focusing first on the 1-month
period, OEA is able to minimize the total costs. Not surprisingly,
OC is able to minimize the processing costs CPROCE (T ′), but
this comes at the price of generally increasing the migrations costs
CMIG
E (T ′) and the data transferring costs CTRE (T ′) w.r.t. OEA.

Moreover, we can see that OMEC requires only an additional
cost of less than 6 [$] compared to OEA. Moreover, we can
note that the maintenance costs CTOTM (T ′) are much lower than
the electricity costs CTOTE (T ′). This is an expected result, since
the AF, which governs CTOTM (T ′), is mainly impacted by the
number of power state transitions ρi(t), which is still low for
all the strategies at the end of the 1-month period. Eventually,
when the 6-months period is taken into account, the costs are
minimized by OC, which is able to: i) reduce the number of
PSs powered on, and consequently decrease CPROCE (T ′), and
ii) increase the total time in SM, and consequently limit the
increase in the maintenance costs CTOTM (T ′). However, we can
notice that OMEC achieves the second position in the ranking.
Interestingly, when the 12-months period is considered, the best
solution turns to be OMEC. Specifically, both OEA and OC have

TABLE 4
Breakdown of different variables after 1, 6 and 12 months for OMEC,

OC, and OEA with |M| = 5, |N | = 15.

Algorithms
∑

i τ
SM
i (T ′) [h]

∑
i ρi(T

′)
∑

i AF
TOT
i (T ′)

∑
t∈T ′

∑
i,j,kmijk(t)

15
V

M
s

T ′ =
1 [Month]

OC 720 402 12.54 5193
OEA 697 488 14.28 3792
OMEC 681.50 632 17.12 3967

T ′ =
6 [Months]

OC 4382 2208 48.66 32462
OEA 2610 2477 54.24 19858
OMEC 2075 2021 45.19 18778

T ′ =
12 [Months]

OC 8764 4412 92.74 64915
OEA 2610 2477 54.39 35082
OMEC 2075 2021 45.30 34002
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Fig. 2. Histogram of the occurrence of migrations events for OMEC, OC
and OEA with |M| = 5, |N | = 15 and |T | = 1 [year].

notably increased the maintenance costs, which have been instead
wisely taken into account by OMEC. Overall, OMEC is able to
save more than 250 [$] and more than 200 [$] w.r.t. OC and OC,
respectively. Therefore, these results confirm our intuition that,
when the period of time under consideration is sufficiently long
(i.e., one year), a solution jointly targeting the maintenance costs
and the energy ones, like done by OMEC, is the best one.

To give more insight, we report in Tab. 4 the following varia-
bles: total time in SM

∑
i τ
SM (T ′), total number of transitions∑

i ρi(T
′), total AF

∑
iAF

TOT
i (T ′), total number of migrations∑

t∈T ′
∑
i,j,kmijk(t). The analysis is again repeated with the

three strategies and by considering T ′ = 1, 6, 12 [months],
respectively. As expected, OC always maximizes

∑
i τ
SM (T ′).

However, while this choice is wise for 1-month and 6-months time
periods, the total number of transitions

∑
i ρi(T

′) is consistently
increased at the end of the 12-months period. As a result, the AF
of OC is clearly higher than OMEC when T ′ = 12 [months].
Interestingly, the solution achieving the lowest AF values after
the 12-months period is OMEC. Moreover, we can observe
that this strategy is able also to reduce

∑
t∈T ′

∑
i,j,kmijk(t)

compared to OMEC and OEA. Therefore, OMEC is able to: i)
limit the increase in the maintenance costs CTOTM (t), by properly
governing the AF, and ii) limiting also the number the migrations,
and the associated costs CMIG

E (t).
In order to better investigate the impact of the different
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(d) PS Maintenance Cost

Fig. 3. Time in SM τSM
i (T ), number of transitions ρi(T ), Acceleration Factor AFTOT

i (T ),maintenance costs for each PS i ∈ M with |M| = 5,
|N | = 15, T = 1 [year].

TABLE 5
Electricity Cost Breakdown, Total Electricity Costs, Total Maintenance Costs, Total Costs for OMEC, OC, and OEA vs. the variation of |N |.

5
Se

rv
er

s

Algorithms CPROC
E (T ) [$] CTR

E (T ) [$] CMIG
E (T ) [$] CTOT

E (T ) [$] CTOT
M (T ) [$] CTOT (T ) [$]

|N | =
11

OC 1458.97 656.80 443.64 2559.52 20930.16 23489.68
OEA 1610.32 643.50 79.371 2333.76 1510.17 3843.93
OMEC 1651.78 646.19 78.620 2377.15 1082.66 3459.81

|N | =
13

OC 1418.06 449.47 1322.49 3188.66 23819.3 27002.96
OEA 1482.57 441.80 129.57 2053.05 6051.31 8104.36
OMEC 1835.97 564.84 121.52 2521.65 2848.98 5370.63

|N | =
15

OC 1703.24 1102.25 315.251 3121.48 1859.57 4981.05
OEA 1897.79 1134.01 158.09 3190.49 1740.59 4931.08
OMEC 1916.37 1140.18 157.36 3214.56 1510.92 4725.48

strategies in terms of migrations, Fig. 2 reports the histograms of
the occurrence of migrations events

∑
ijkmijk(t) ∀t ∈ T (with

T = 12 [months]). More in detail, a number of 0 migrations is
counted for almost 20000 TSs for the three strategies, correspond-
ing to 57% of the total time. We recall that we are considering a
scenario in which the PSs are pretty loaded. Hence, it is not always
possible to put PSs in SM. From the figure, we can see that OC
tends to spread the occurrence of migration events, by requiring
even the entire set of 15 VMs to be migrated in the same TS. This
is due to the fact that this strategy does not consider the migration
costs. Therefore, it can be very aggressive in terms of migrations
that are concurrently performed. On the other hand, both OMEC
and OEA are able to reduce the occurrence of migration events
and also the maximum number of migrations, which is equal to 9
in this case.

At this point a natural question is then: what is the impact of
the different strategies on the single PSs? In order to shed light
on this issue, Fig. 3 reports the time in SM τSMi (T ), the number
of transitions ρi(T ), the Acceleration Factor AFTOTi (T ), and
the maintenance costs for each server i ∈ M by applying OC,
OEA and OMEC with T = 1 [year]. All the figures report
the y-axis in logarithmic scale for the sake of clarity. Focusing
on τSMi (T ), we can clearly see from Fig. 3(a) that the amount
of time in SM is notable increased in PS 5 with OC w.r.t.
to the other strategies. However, this has a cost in terms of

number of transitions ρi(T ), which is clearly higher for PS 5
with OC compared to OMEC and OEA, as reported in Fig. 3(b).
Eventually, also high values of ρi(T ) are experienced with OC
for PS 1,2,4, despite their relatively low values of τSMi (T ). As a
result, high values of AF and maintenance costs are experienced by
the PSs when OC is employed, as shown in Fig. 3(c) and Fig. 3(d),
respectively. Moreover, while in general the amount of time in SM
is pretty similar both with OMEC and OEA (Fig. 3(a)), the former
generally performs better than the latter, by wisely limiting ρi
for PSs 1,2,3,5 (Fig. 3(b)). Consequently, also the AF of OMEC
is in general lower than OEA (Fig. 3(c)), thus bringing lower
maintenance costs for all the PSs - except from PS 4 (Fig. 3(d)).

In the following, we investigate the impact of varying the
number of VMs |N |, while keeping the number of PSs fixed
to |M = 5|. Tab. 5 reports the results, which are obtained by
running each strategy with T = 1 [year]. Interestingly, in all
cases OMEC clearly outperforms both OEA and OC, by ensuring
the lowest values of CTOTE (T ). More in depth, the gap between
OMEC and OC in terms of total costs is more than 20000 [$]
when |N | is equal to 11 and 13. In particular, as the number
of VMs is decreased, OC exploits the fact that the PSs are less
loaded in order to trigger more frequently the SM state on them.
While this strategy is in general beneficial from the perspective
of processing costs, which tend to be reduced, the maintenance
costs CTOTM (T ) are negatively impacted. In addition, we can see
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TABLE 6
Maintenance costs, electricity costs, and total costs for OMEC, OC,

and OEA vs. the variation of |M|.

Algorithms CTOT
M (T ) [$] CTOT

E (T ) [$] CTOT (T ) [$]

|M| = 3
OC 8466.39 1989.38 10455.77
OEA 1723.44 1673.82 3397.26
OMEC 1195.11 1682.10 2877.21

|M| = 5
OC 1859.57 3121.48 4981.05
OEA 1740.59 3190.49 4931.08
OMEC 1510.92 3214.56 4725.48

that also the OEA strategy performs consistently worse that OEA
for all the values |N |. On the other hand, the proposed OMEC
solution is able to trade between the different costs, and to achieve
the best performance in terms of total cost CTOT (T ).

We then evaluate the performance of the algorithms when
the number of servers |M| is varied. In order to provide a fair
comparison, we set |N | = 3 × |M| for each considered value
of |M|. Tab. 6 reports the obtained results. Not surprisingly, the
total energy costs CTOTE (T ) are increased as |M| is increased,
for all the considered strategies. However, the maintenance costs
CTOTM (T ) of OC tend to increase when |M| is decreased. By
further investigating this issue, we have found that, when |M|
is decreased, OC tends to change the power state to a smaller
number of PSs, resulting in a large increase of their AFs, and
consequently of CTOTM (T ). On the other hand, OMEC ensures
the lowest values of CTOT (T ) when |M| is decreased, by wisely
changing the power states of the PSs.

In the final part of our work, we have considered the impact of
the Ψi parameter, which acts as a weight for the power state transi-
tions ρi(t) appearing in Eq. (12). Fig. 4 reports the results obtained
from the variation of Ψi with the OMEC strategy. Fig. 4(a) reports
the impact on the costs CTOTE (T ), CTOTM (T ), and CTOT (T ).
As expected, the total costs CTOT (T ) are increased when Ψi is
increased, due to the increase in the maintenance costs CTOTM (T ).
To give more insight, Fig. 4(b) reports the time in SM

∑
i τ
SM
i (T )

and the total number of transitions
∑
i ρi(T ). Clearly, when

Ψi is increased, both
∑
i τ
SM
i (T ) and

∑
i ρi(T ) tend to be

reduced. Finally, Fig. 4(c) reports the impact of Ψi on the total
number of migrations

∑
t∈T

∑
ijkmijk(t) and the total amount

of transferred data
∑
t∈T

∑
ijk dijk(t). In particular, the total

number of migrations tends to decrease when Ψi is increased,
as a consequence of the decrease of ρi(t). On the other hand, the
amount of transferred data between VMs tends to increase when
Ψi is increased.

8 CONCLUSION AND FUTURE DIRECTIONS

We have investigated the problem of jointly managing the main-
tenance costs and the electricity consumption in a CDC by acting
on the PSs power states and the VMs allocation. After reporting
a model to compute the maintenance costs given the power
(and consequently the temperature) variation between AM and
SM states for each PS, we have introduced the electricity cost
computation, which is based on the CPU processing, the amount of
transferred data, and the VMs migrations. Consequently, we have
optimally formulated the OMEC problem, which jointly takes
into account the aforementioned terms. In addition, we have also
detailed the linearization for the non linear constraints. Results,
obtained over different scenarios, demonstrate that, at the end of
the considered time period of 1 [year], OMEC outperforms both
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Fig. 4. Impact of Ψi with OMECM = 15 and N = 5.

the OC and OEA strategies in all cases, thus always ensuring
the lowest values of total costs. We believe that this work can
be the first step towards research directions. More in detail, the
definition of efficient heuristics, able to solve the problem for very
large CDCs, can be an interesting direction. In addition, we plan
also to solve the optimal problem by considering multiple TSs
jointly together. Finally, the application of our approach to a set
of CDCs, each of them subject to different electricity prices (e.g.,
due to different CDC locations), can be another interesting aspect
to be investigated.
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