A ns2-based simulation framework for performance evaluation of overlay networks

Michele Amoretti Francesco Zanichelli

Università di Parma

Mauro Andreolini <u>Riccardo Lancellotti</u>

Università di Modena e Reggio Emilia

FIRB Web-Minds, Genova 27-28 Ottobre 2006

Peer-to-peer systems

- Increasing number of P2P-based applications
 - Streaming
 - Filesystems
 - ...
- Need for tools to evaluate performance of overlay networks and routing algorithms
 - Prototypes \rightarrow too many nodes required
 - Analytical models \rightarrow may be too complex
 - Simulation
- Need for simulators of overlay networks
 - Already validated models and tools

ns-2 Network simulator

- Standard "de facto" in network simulation
- Widely adopted in scientific community
- Little support for overlay (P2P) networks
- Some P2P feature in code for ad-hoc networks (specific for message routing in wireless links)
- Gnutella sim (support <u>only</u> for Gnutella v0.4, requires patches and is not maintained)

Proposal

- Simulation framework for overlay networks
 - Based on widely-accepted ns-2 simulator
 - Focus on performance evaluation

• Elements of the framework

- Overlay routing algorithms (C++ classes)
- Topology generators (TCL scripts)
- Data analysis tools

Overlay routing algorithms

- Flexible base class hierarchy
- Object-oriented design: key classes
 - Support classes
 - Transport-level data
 - Logging facility
 - P2P routing
- Easy to extend
 - New algorithm -
 - → New class (+ TCL binding)

Available algorithms

Unstructured networks

- Flood-based
- Probabilistic flood
- Random Walker

Semi-structured networks

- Support for supernodes
- JXTA
- DHT
 - Pastry

Novel algorithms

- Halo
- Fuzzy-DHT

Logging facility

- Separate logfile for P2P network operations
- Reports routing events:
 - Hits
 - Miss
 - Query drop
- For each event logs additional information such as:
 - Simulation time of the event
 - Query TTL
 - Query key
 - Additional information (algorithm-supplied)
- Log file easy to parse (regexp-friendly)

TCL scripts

- Library of TCL scripts for the simulation
 - Definition of Physical topology
 - Construction of overlay network
 - Logging of generated topologies
 - Population of overlay network (resources)
 - Setup of log files
 - Generation of queries
- Multiple available functions for each phase
- TCL support for algorithms parameters
- TCL support for command-line options
 - Sensitivity analysis can be carried out without changing C++ and TCL code

Physical network topologies

- Star topology
- Real Network model (UniPR)
- Hierarchical topologies (Brite generated)

Overlay network topologies

- Neighborhood relationships
- Available topologies
 - Poisson networks
 - Scale Free networks
 - Seeded networks
 - Locally preferential networks
 - JXTA growth (JXTANetMap)

FIRB Web-Minds, Genova 27-28 Ottobre 2006

TCL support for resources and queries

Trace-driven simulation

- Repeatable simulation
- Support for multiple RNG seeds

Traces for resources

Distribution of resources over nodes

Traces for queries

- Sequence of keys to search in the network
- Support for "wildcard searches"
- Queries can have different "selectivity" σ
- Allows to evaluate overlay routing algorithms performance as a function of $\boldsymbol{\sigma}$

Data collection and analysis tools

Automated analysis of logfile

- Perl-based log parser
- P2P logs
- Standard ns-2 logs
- Topology logs

Automatic statistic extraction

- Histograms
- Cumulative distribution

Automatic plotting

- Template gnuplot files

Available analyses

- **Hit rate** (# of hits/theoretical max)
 - Exact searches
 - Wildcard-based searches
- TTL of hits
- Time of hits
- Overhead (# of pkts per query)
- Topology of overlay network

FIRB Web-Minds, Genova 27-28 Ottobre 2006

Hops # distribution of query hits (JXTA)

350 300

250

150

100 50

query hits 200

÷

Experimental testbed

CASPUR Cluster

- 40 Nodes, dual AMD 64 CPU, 8GB RAM, SUSE Linux
- OpenPBS batch scheduler

• WebLAB Cluster

 - 20 Nodes, Intel Xeon CPU, 1GB RAM, Debian Linux

UniPR Cluster

- 7 Nodes, Intel Pentium IV, 1GB RAM, Ubuntu Linux
- Simulator compiles and runs correctly in every environment (including 64 bit)
- Simulation of up to 4000 Nodes

Publications

- M. Andreolini, R. Lancellotti P. S. Yu, "A flexible and efficient lookup algorithm for Peer-to-Peer systems", Submitted for publication, 2006
- M. Amoretti, F. Zanichelli, G. Conte, "Performance evaluation of advanced routing algorithms for unstructured Peer-to-peer Networks", ValueTools 2006
- M. Amoretti *"Peer-to-peer based Grid architectures"* Ph.D. thesis, 2006
- M. Andreolini, R. Lancellotti P. S. Yu, "Analysis of peerto-peer systems: workload characterization and effects on traffic cacheability" MASCOTS 2004

A ns2-based simulation framework for performance evaluation of overlay networks

Michele Amoretti Francesco Zanichelli

Università di Parma

Mauro Andreolini <u>Riccardo Lancellotti</u>

Università di Modena e Reggio Emilia

FIRB Web-Minds, Genova 27-28 Ottobre 2006