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Abstract—Recent research showcased several cyber-attacks
against unmodified licensed vehicles, demonstrating the vulner-
ability of their internal networks. Many solutions have already
been proposed by industry and academia, aiming to detect and
prevent cyber-attacks targeting in-vehicle networks. The majority
of these proposals borrow security algorithms and techniques
from the classical ICT domain, and in many cases they do not
consider the inherent limitations of legacy automotive protocols
and resource-constrained microcontrollers. This paper proposes
DAGA, an anomaly detection algorithm for in-vehicle networks
exploiting n−gram analysis. DAGA only uses sequences of CAN
message IDs for the definition of the n−grams used in the
detection process, without requiring the content of the payload
or other CAN message fields. The DAGA framework allows the
creation of detection models characterized by different memory
footprints, allowing their deployment on microcontrollers with
different hardware constraints. Experimental results based on
three prototype implementations of DAGA showcase the trade
off between hardware requirements and detection performance.
DAGA outperforms the state-of-the-art detectors on the most
performing microcontrollers, and can execute with lower per-
formance on simple microcontrollers that cannot support the
vast majority of IDS approaches proposed in literature. As
additional contributions, we publicly release the full dataset and
our reference DAGA implementations.

I. INTRODUCTION

IN the the last years the automotive industry shifted towards
the adoption of novel technologies such as drive-by-wire

systems, Advanced Driving Assistance Systems (ADAS) and
Internet connectivity, resulting in a proliferation of Electronic
Control Units (ECUs) connected to heterogeneous sensors and
actuators used to monitor and control the vehicle and its
surroundings. Despite these systems are designed to increase
safety and reduce the risk of road fatalities, the adoption of
software-controlled actuations introduces security vulnerabil-
ities [1] that are documented in white papers and technical
reports [2], [3]. Moreover, the increasing adoption of Internet
connectivity paved the way to novel attack vectors [4] that
might expose sensitive information about the vehicle and
its passengers. Since the first introduction of drive-by-wire
systems in modern automobiles, security researchers from both
industry and academia demonstrated that the vulnerabilities of
these systems [5] might be hijacked to obtain remote control
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of the vehicle. The first countermeasures adopted by car man-
ufacturers are borrowed from the ICT security domain: secure
gateway and authenticated diagnostic are relevant examples
of security solutions adapted to the automotive scenario [6],
[7]. However, this first layer of defense fails against attackers
that are able to access either the internal vehicle network or
the ECUs. To this aim it is necessary to adopt a defense-
in-depth paradigm for the whole vehicle system, and since
internal vehicular communications are the main target of
cyber-attacks to the connected vehicles [8] it is necessary
to monitor the network communication continuously. To this
purpose, many security researchers already proposed Intrusion
Detection Systems (IDS) designed for the Controller Area Net-
work (CAN) [9], which is the most deployed internal network
communication protocol in modern vehicles. However, most
of the existing research does not consider the computational
constraints of the automotive microcontrollers, hence resulting
in the proposal of intrusion detection models that are not
deployable on common microcontrollers [10]. On the other
hand, previous works that are focused on the proposal of
solutions currently deployable on automotive microcontrollers
are designed to identify only a limited set of attacks [11],
[12]. In this work we present DAGA (Detecting Attacks to
in-vehicle networks via n-Gram Analysis), an anomaly detec-
tion framework designed to use n−grams for its detection
purposes. The DAGA framework exploits the n−grams for
the definition of different detection models that can be used
to adapt the detection algorithm to the specifications of the
microcontrollers. The detection capabilities of DAGA are
tested against a threat model including 5 attack scenarios that
are demonstrated effective in known attacks against modern
vehicles. The experimental evaluation of DAGA demonstrates
its ability to achieve high detection performance against all
the different attack scenarios considered in the threat model.
Moreover, three implementations of the DAGA detection
algorithm are presented, showcasing the trade-off between
the memory footprint of the detection timeliness on 5 mi-
crocontrollers used in automotive applications. As a final
contribution, the dataset and the implementations of DAGA
are publicly released.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents the fundamentals
required for the understanding of this paper and the considered
threat model, while Section IV describes the dataset used



for training and testing DAGA against the considered threat
model. Section V presents the DAGA detection algorithm and
the design choices for three reference DAGA implementations.
Section VI presents the experimental detection performance of
DAGA against the considered threat model. The of DAGA for
automotive-grade microcontrollers is presented in Section VII,
showcasing the different trade-offs of the three reference
implementations. Final remarks are discussed in Section VIII.

II. RELATED WORK

With the introduction of electronic components to in-vehicle
networks, a modern car can be considered as a Cyber-Physical
System (CPS). Cyber-security for CPS is an established field
of research, focused on the development of detection method-
ologies for protecting the system and its components [13]–
[15]. However, the peculiarities of the automotive domain hin-
der the adaptation of solutions designed for generic CPS to this
scenario, requiring the design of novel solutions targeting its
components [16]. Solutions currently investigated by security
researchers are either focused on the development of novel
security mechanisms targeting V2V communications [17] or
in demonstrating the issues related to embedded devices [18]
or to V2V communications [19].

Another active research path is focused on hardening in-
vehicle networks by applying concepts borrowed from classi-
cal ICT networks to the automotive scenario. This results in the
development of novel intrusion detection systems specifically
designed for the CAN bus [20], which is the most deployed
in-vehicle communication protocol. The baseline assumption
for IDS is that it is possible to build a model that describes
the normal behavior of the CAN bus, and that attacks can be
detected because they introduce a measurable deviation from
the normal profile [6]. Works within this field propose different
models for the definition of the normal behavior of the CAN
bus.

Security researchers demonstrated that anomaly detectors
based on machine learning and neural networks can be adapted
to the CAN bus [21], [22]. Despite early results looks promis-
ing, the application of machine learning detection algorithm
or neural networks to the in-vehicle network does not comply
with the strict requirements of automotive microcontrollers.

Due to the necessity of standardization of different security-
oriented solutions, the AUTOSAR consortium [23] is estab-
lished since 2003. AUTOSAR provides a set of specifications
that describe basic software modules, application interfaces,
and define a standard exchange format that manufacturers
and suppliers can adopt for their needs. AUTOSAR covers
functional safety and security aspects of on-board communi-
cations in the Secure On Board Communication basic software
module (SecOC), listing its requirements [24] and providing
its specification [25]. Many solutions designed to extend the
AUTOSAR SecOC module have already been presented in
literature [26], [27] and proven efficient in protecting on-board
communications. All the AUTOSAR solutions are focused on
the authenticity, confidentiality, and non-repudiation of the
CAN communications, while the solution presented in this pa-
per is focused on the proposal of an anomaly detector for CAN

communications. Since the AUTOSAR SecOC solutions and
the one presented in this paper are focused on different aspects,
it is possible to deploy them independently from each others
to further increase the security of CAN communications.

Many intrusion detection systems for in-vehicle networks
have already been published in literature. Some of these
intrusion detection systems are designed to analyze the low-
level characteristics of the ECUs composing the internal
vehicle network, such as the voltage differentials of CAN
transceivers [28], [29]. These solutions are able to detect any
inconsistency by comparing the low-level characteristic evalu-
ated during transmission of a message against the detection
model. However, compared to the other detection methods
presented in literature, these methods require a dedicated hard-
ware for their implementation, preventing their deployment on
common microcontrollers. Moreover, similar approaches are
only effective against an attacker that replaces or impersonates
a benign ECU with different hardware, while it cannot detect
attacks based on the exploitation of a software vulnerability
of a benign ECU.

Other research efforts are focused on the analysis of the
inter-arrival times of the CAN messages and on the analysis of
the content of those messages. Anomaly detectors based on the
analysis of the inter-arrival times [11], [30], [31] are based on
the assumption that most CAN messages are sent periodically
on the network within a fixed time interval, hence it is possible
to exploit this feature to detect messages that do not follow the
expected timing. These detection methods are only applicable
to cyclic messages and cannot detect any anomaly if the
attack targets a non cyclic message. The experimental results
of [31] demonstrated a false positive rate of 0.294%, which is
extremely high in the automotive scenario since high speed
CAN bus can deliver thousands of messages per second.
Moreover, the detection method described in [31] is based on
the signals encoded in the payload CAN data frames, hence
requiring the access to the formal specification of the vehicle
or the application of reverse engineering methods to extract
signals from CAN data [32], [33]. Our proposal, that does not
analyze the contents of the payload, shows that in the context
of CAN communications even lightweight analyses only based
on CAN IDs can be effective to detect many classes of attacks.

Another group of solutions is based on the definition of
thresholds applied to high level features computed by aggre-
gating multiple CAN messages [34], [35]. The authors of [34]
presented a detection method based on the analysis of the
entropy of the network, using a threshold-based metric for
the definition of the normal entropy values, while the authors
of [35] proposed a threshold-based detection model based on
the spectrum analysis of chunks of CAN message payloads.
All these solutions require floating point operations, which are
usually not supported by low-end microcontrollers. Moreover,
these methods are only effective against high-volume attacks,
in which the attacker injects hundreds of malicious messages
per second, making them unreliable against low-volume and
targeted attacks.

Other works presented detection models based on the con-
tent of CAN messages. Some of these works are based on the
analysis of the content of the message payload. These solutions



either (i) require access to the specification of the vehicle
to extract the signals encoded in the payload [36], (ii) have
been designed to detect only a particular attack scenario [12],
or (iii) leverage detection algorithms that do not meet the
computational constraints of common microcontrollers [10],
[36]. Lightweight algorithms [37], [38] that do not rely on
proprietary formal specifications and are deployable on low-
end microcontrollers are based on the analysis of message
identifiers. However their low computational cost are charac-
terized by poor detection performance against many known
attacks. Similarly to the aforementioned work, DAGA relies
on message identifiers for its detection purposes by exploiting
n−gram to build its detection model. The n−grams used
by DAGA are composed of a sequence of n consecutive
identifiers transmitted over the CAN bus. Despite n−gram
analysis has been applied at first for natural language pro-
cessing [39], [40], it has been also used for the development
of IDS in ICT networks [41], [42] . To the best of our
knowledge, DAGA is the first n−gram based IDS applied
to the automotive scenario, and the extensive experimental
evaluation presented in this paper shows that DAGA is able to
achieve excellent detection performance against a wide range
of real attack scenarios. We remark that the aim of DAGA
is to demonstrate the suitability of n−gram-based detection to
resource-constraint devices such as the ones characterizing the
automotive environment. The current state-of-the-art includes
many anomaly detectors based on detection metrics designed
to operate on the different fields of the CAN frames. There
are at least 3 main benefits on focusing on the ID of the
CAN message for detection purposes. The first one is that
it is possible to access the content of the ID field without
any reverse engineering process since the message IDs are
defined in the CAN standard. Second, the injection of CAN
messages is the final goal of any known attack to the CAN bus
(Section III-B), hence it is possible to identify a wide array of
different attacks by monitoring only the sequence of message
IDs on the network. Finally, the experimental evaluation on
real automotive microcontrollers demonstrates that by using
detection models with different memory footprint it is possible
to deploy DAGA on extremely resource-constraint devices,
including the vast majority of ECUs found inside a modern
vehicle. Compared to the state-of-the-art, DAGA does not
require a dedicated hardware, it is effective also in the presence
of non periodic CAN messages, it is able to detect low-
volume attacks, and it does not require access to proprietary
vehicle specifications. Moreover, to the best of our knowledge
DAGA is the first anomaly detection framework that offers
the possibility to tailor the detection method according to the
desired detection performance, the characteristics of the target
microcontroller, and the desired detection timeliness.

III. BACKGROUND KNOWLEDGE AND THREAT MODEL

We describe the background knowledge required for the
understanding of the paper in Section III-A and the threat
model Section III-B.

A. A primer on CAN

The Controller Area Network is a vehicle bus standard
designed to allow the nodes of the network to exchange data
without requiring a host computer [9]. CAN is one of the
most deployed networking protocols for internal vehicular
communications due to its high resilience to electromagnetic
interference and its cheap implementation.
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Fig. 1: Data frame standard format

The CAN protocol defines 4 different message types.
Among these 4 message types, the data frame is the only
one used to exchange data between ECUs. The CAN data
frame is composed of 3 main fields: the identifier (ID), the
data length code (DLC) and the payload (data). The ID is
used to distinguish among different types of CAN data frame.
Data frames characterized by a given ID are produced by
only one ECU, while receiver ECUs use the value of the ID
to select data frames that are relevant for their functioning.
The ID is also used for arbitration of the CAN messages,
where lower values of this field denote messages with higher
priority. The size of the ID field depends from the format of
CAN message. Figure 1 shows an example of a CAN data
frame in the standard format, which have IDs with a size
of 11 bits, while the extended format defines the ID field
with a size of 29 bits. The extra 18 bits of the extended
format are encoded separately from the 11 bits of the standard
format for backward compatibility. The DLC field encodes
the number of bytes composing the data field. The data field
encapsulates the information that the sender ECU transmits
to other ECUs on the network. The data field has a variable
size (from 0 to 8 bytes) and usually packs several different
signals. The CAN standard leaves complete freedom to the
car manufacturers about the structure, number, encoding, and
semantic of these signals. Hence, without having access to the
formal specifications of the CAN messages for a particular
vehicle model (contained in a file called DataBase for CAN
or DBC), the signals encoded in the data field can only be
interpreted as an opaque binary blob.

B. Threat model

We consider attackers that have access to the CAN bus
and are able to: (I) sniff the CAN data and learn information
about the normal CAN traffic flow; (II) inject arbitrary CAN
data frames without any limitation about their content or the
injection frequency. We also assume that attackers are not
able to manipulate, re-order or delete messages in transit on
the CAN bus. We observe that DAGA should not be used in
scenarios where attackers can completely control the medium
(e.g., MitM attacks). A similar threat model allows the attacker
to perform multiple realistic attacks already considered by
security researchers, including replay attacks [2], [8], fuzzing
attacks [43], and denial-of-service attacks [44], [45]. We



remark that all the aforementioned works are focused on
gaining access to the CAN bus to inject messages. How the
infection of the CPS system is achieved can differ from work
to work, but the final goal is to inject messages on the CAN
bus. In [2] the authors accurately described the process of
gaining remote access to the infotainment unit of their target
vehicle through the remote exploitation of exposed vulnerable
services, which led to the re-flashing of the gateway ECU,
allowing the injection of messages from the infotainment unit
to the CAN bus, while in [45] the authors physically connected
a malicious device to the CAN bus to deactivate an ECU by
exploiting the CAN error handling mechanism. While attacks
can be extremely different from each other, they both require
the injection of values on the CAN bus to affect the physical
behavior of the target vehicle. Hence, protecting the bus from
these scenarios is crucial for the safety of the automotive CPS.
The details of the different attacks composing our threat model
are described in the following.

1) Replay attack: A replay attack is performed by gathering
legit messages from the CAN bus and injecting them at a
later time. The aim of this attack is to subvert the normal
behavior of the ECUs, including those powering drive-by-
wires systems [8], [46]. We highlight that in this attack model
the attacker cannot remove normal messages from the bus,
hence replayed messages interleave with the normal CAN
traffic.

As an example, consider the scenario in which a collision
avoidance system uses the front sensors to detect the presence
of objects in front of the vehicle and that the related CAN
messages is sent with a cycle time of 10ms. The attacker
might replay these message with a higher frequency, e.g. a
message every millisecond. Moreover, by reverse engineering
the content of the message (via a manual reverse engineering
analysis or using automatic reverse engineering tools such
as [32], [33]), the attacker is able to craft the content of the
injected message. As an example, the attacker can record a
CAN data frame with the meaning of “front road clear”, then
it can change the content of the message with the same value
used to represent the presence of obstacles (i.e. “front obstacle
- brake”), thus activating the collision avoidance system.

We consider three different types of replay attacks:
• Single message replay: a single message is gathered

from the bus and then injected at a later time;
• Ordered sequence replay: an ordered sequence of mes-

sages is gathered from the bus and then injected at a later
time without any modification;

• Arbitrary sequence replay: after gathering a set of
messages from the bus, the attacker rearranges them to
generate an arbitrary sequence of messages, which is then
injected at a later time.

2) Fuzzing attack: Fuzzing is the process of submitting
malformed inputs to a system aiming at eliciting anomalous
behaviors that might expose unknown vulnerabilities and
might help in reverse-engineering the syntax and semantic of
undocumented communication protocols [47]. Fuzzing attacks
in automotive networks are implemented by injecting CAN
messages with random content. Current literature describes
two types of fuzzing attacks:

• ID fuzzing: the attacker generates malicious CAN data
frames having random ID and data, and injects them into
the bus. The ID field is chosen to be different from any
ID observed in the normal traffic;

• Payload fuzzing: the attacker generates malicious CAN
data frames having a valid ID (i.e. an ID that has been
previously seen on the bus) and a randomly generated
data field, and injects them into the bus.

Let us refer to the previous example of the front sensor used
for collision avoidance. An attacker can fuzz the payload of
this message to reverse engineer its semantic.

3) Denial-of-Service: The Denial-of-Service (DoS) attack
aims to disrupt a normal process by preventing legitimate ac-
cess to a necessary resource for a significant time interval [48].
In automotive networks, DoS attacks can be performed by
injecting high-priority messages at a high-frequency rate, pre-
venting legit lower-priority messages from being transmitted
(see Section III-A). We consider a DoS attack to be effective
only if it disrupts the normal CAN communication for at least
twice the cycle time of the most frequent message on the
network. As an example, if the most frequent periodic message
has a cycle time of 10ms, the DoS attack is considered
effective only if it last for at least 20ms. We consider two
types of DoS attacks strategies:

• Zero ID DoS: the attacker injects CAN data frames with
the ID field set to 0x000. Although these messages would
always win arbitration, simple detection strategies can
easily detect the attack in case the ID 0x000 is not used
by legit messages;

• Lowest ID DoS: the attacker injects CAN data frames
with the ID field set to the lowest ID value previously
observed among legit messages.

Consequences of this attack have been studied in liter-
ature [49]. While non-critical ECUs stop working in case
of missing CAN communications, critical ECUs (such as
the Engine Control Unit or the Brake Control Module) are
designed to function in limited regime (also known as limp
mode) to prevent mechanical damages to the vehicle. In limp
mode, critical ECUs continue to function without participating
in the normal CAN communication, allowing the driver to
safely stop the vehicle. The limited working regime affects
the subsystems of the vehicle differently according to their
scope. As an example, upon activation of the limp mode the
driving subsystem may limit the vehicle’s speed under 30
km/h while also limiting the gearbox to the second gear. If
a DoS attack is conducted while the target vehicle is running
on a high-speed road (such as highways or motorways) the
limited working regime of critical ECUs might be used to
jeopardize the safety of people inside and nearby the vehicle.
For completeness, we remark that limp mode has also been
proposed as a reaction mechanism following the detection of
cyber-attacks to in-vehicle networks [50].

IV. DATASET

This section describes the dataset used for training and
validating DAGA. The dataset is collected from the CAN bus
of an unmodified, licensed 2016 Volvo V40 Kinetic model.



The CAN communication is recorded by physically connecting
a laptop to the On-Board Diagnostic (OBD-II) port with a
PCAN-USB adapter by Peak System [51] and a D-Sub to
OBD-II cable. The high-speed CAN bus segment exposed on
the OBD-II port of the vehicle contains data coming from the
powertrain segment, hence it is possible to access to CAN
data frames exchanged by the ECUs to control the engine and
other systems found in this section. The dataset presented in
this section is composed of two different parts: the clean part,
used for the training of DAGA and containing CAN traffic
traces recorded from the test vehicle; and the infected part,
used for the performance evaluation of the detection of DAGA
and in which the attack composing the threat model described
in Section III-B are replicated. To the best of our knowledge,
this is the first dataset containing multiple attacks designed for
the evaluation of CAN IDS, and is publicly available online 1.

A. Clean dataset

The clean dataset is composed of 7 different CAN traces,
including more than 8 million CAN messages correspond-
ing to approximately 90 minutes of CAN traffic. The CAN
traces are gathered in different driving sessions performed on
different road types (urban, suburban, and highway), traffic
conditions, weather conditions and geographical areas (plain,
hill, and mountain), and by activating many different control
commands. The CAN traces include ID, DLC, and payloads
of each CAN data frame associated to its relative timestamp.
The clean dataset contains data from the powertrain segment
of the CAN bus of our test vehicle, which is used by ECUs
to exchange data related to the vehicle dynamics. The other
CAN segments are usually identified as the body (used to
control different comfort features such as the windshield
wipers and the air conditioning), the chassis (used for the
centralized lock or the output of the proximity sensors), and
the infotainment segments (used to control the radio and the
external connections exposed by the vehicle). These CAN
segments are connected with each other through a centralized
gateway ECU, and despite the segments are usually isolated
from each other, some CAN messages might be forwarded
from one segment to the other to implement particular features,
such as increasing the stereo volume in case the engine RPMs
are above a defined threshold. The monitored segment of the
CAN of our test vehicle exposes 50 unique message IDs,
which are all available in all the 7 traces. Despite this number
seems little compared to the overall number of possible CAN
IDs (211 on a standard CAN implementation), we remark
that the powertrain section of the vehicle is only one of the
different CAN segments found in modern vehicles.

As an example, consider that trace #1 is recorded on a
sunny day while trace #3 is recorded in a rainy day, activating
both front and back windshield wipers. Hence, it is logical
to assume that trace #3 should include the data related to the
activation of the wipers. However, by comparing the IDs found
in trace #3 with the ones found in trace #1 no difference
is detected. This example shows two interesting behaviors.
The first one is that messages whose content is not required

1https://github.com/SECloudUNIMORE/ACS/tree/master/DAGA

by ECUs in the powertrain segment of the network are not
forwarded into the segment, hence limiting the overall number
of message IDs found in the segment. The second interesting
behavior is that the CAN message IDs found in each of the 7
traces is consistent, despite the activation of different control
commands. This implies that despite the overall number of
possible CAN IDs is 211, only 50 of those messages are
actually used in the powertrain segment of our test vehicle.

B. Infected dataset

The infected dataset is used for the evaluation of the detec-
tion performance of DAGA, and is generated by simulating the
attacks composing the threat model presented in Section III-B
on the traces of the clean dataset in a laboratory environment
for safety reasons. The laboratory environment used for the
generation of the attack traces is composed of a laptop
computer, a Raspberry Pi 4 board, and an Arduino Mega.
The CAN bus is implemented through a breadboard, and each
device is directly connected to the bus. The expansion boards
used to connect both Raspberry and Arduino to the CAN are
terminated with a 120Ω resistor and include a CAN transceiver
responsible to handle re-transmissions, delays, arbitration and,
in general, all the low level details that might have been
affected by simulation artifacts. The Raspberry board is used to
replay the clean CAN trace, while the Arduino board is used to
inject malicious CAN messages. The laptop computer records
the data from the CAN bus that is used in the experimental
evaluation. Figure 2 shows the laboratory environment used
for the generation of the infected traces.

Fig. 2: Laboratory setup used for the generation of the infected
dataset

To generate the different attack scenarios it is necessary to
consider the messages injected by the attacker. As an example,
consider a low-volume replay attack targeting a message that
normally appears on the CAN with a very high frequency.
This attack might go undetected with a higher probability with
respect to the same attack targeting a message that normally
appears on the bus with a very low frequency or with a non-
periodic pattern. To overcome this limitation and perform a



comprehensive performance evaluation, the infected dataset
includes multiple instances of the different attack scenarios,
each one targeting a different set of messages that are selected
based on their different probabilities of appearing on the CAN
bus. As a result, the infected dataset includes a total of 168
CAN traces, for a total of more than 200 million messages
corresponding to more than 40 hours of CAN traffic. All
the injection attacks are generated with a fixed frequency of
one attack instance every second. This attack frequency is
selected as representative of low-volume attacks, which are
the most difficult to detect for any IDS designed for CAN
communications. Hence, we remark that the selected frequency
is also the worst-case scenario for the detection performance
of DAGA.
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Fig. 3: Percent distribution of the IDs composing the dataset

Figure 3 shows the probability distribution of the messages
of the clean dataset. The x-axis represents the message IDs,
while the y-axis shows the percentage of those messages in
the clean dataset. The 3 bars highlighted with a different color
represent 3 cyclic message IDs selected for the simulation
of the different attack scenarios. They are selected as rep-
resentative of the messages with a high, medium, and low
frequency (IDs 0x008, 0x145, and 0x2C5, respectively).
We also included the only non-periodic message found in the
dataset (ID 0x001) to better represent the different class of
messages. The percent distribution, the cycle-time, and the
label used to address the selected messages are summarized
in Table I.

ID [hex] Distribution [%] Cycle-Time [ms] Label

0x008 6.2565 10 top
0x145 3.1278 20 mid
0x2C5 1.0426 60 low
0x001 8.0057e-5 - not

TABLE I: IDs of messages selected from the clean dataset

The infected dataset is composed of the following attacks:

• Single ID replay: set of traces in which a single message
with a valid ID is injected once every second. This attack
scenario is composed of 4 different attack instances, each
corresponding to the injection of one of the 4 selected

messages over the 7 traces of the clean dataset, for a
total of 28 traces. We remark that this attack scenario
can be further distinguished depending on the content of
the payload field. In case of a valid payload, obtained
through observation of messages included within the
clean dataset, the attack is declined as single message re-
play; otherwise, in case of a payload chosen through other
methodologies, the attack is declined as payload fuzzing.
Although for other existing approaches these two attacks
have different consequences on the detection system (and
can be detected with other detection algorithms), in our
proposal they both fall back to the same class of attack
because both of them require the injection of a single
message with a valid ID. Hence, since our solution is
not able to distinguish between the two attack scenarios,
the detection performance of DAGA is tested against the
generic single ID replay attack scenario.

• Ordered sequence replay: set of traces in which se-
quences of messages observed in the clean traces are
injected once every second. Injected sequences are ran-
domly selected from the clean dataset and their length
varies from a minimum of 2 to a maximum of 10
messages, thus generating 9 different attack instances for
each of the 7 clean traces. Hence this scenario includes
63 traces.

• Arbitrary sequence replay: set of traces in which a ran-
domly generated sequence of valid messages is injected
once every second. The length of injected sequences
ranges from a minimum of 2 to a maximum of 10
messages. Also this scenario includes 63 traces.

• ID fuzzing: set of traces in which a message having a
random ID that does not belong to the clean dataset is
injected once every second. The payload of this message
is also randomly generated, and the total number of
infected traces generated in this scenario is composed of
7 traces.

• Lowest ID DoS: set of traces in which a Denial-of-
Service attack is simulated by injecting the message
with the lowest ID. The most frequent message of the
clean dataset has a cycle time of 10ms. According to the
assumption presented in Section III-B3, the DoS attack
is considered effective if the normal communication is
disrupted for at least 20ms. Since the CAN segment of
our vehicle is configured with a baud rate of 500kbps
(which is the most common baud rate for high-speed
CAN bus of modern vehicles), it is necessary to inject
at least 10k bits to ensure that the bus will be filled with
DoS messages for the required time. By injecting CAN
data frames with a length of 111 bits, to occupy the bus
for a 20ms it is necessary to inject 90 messages, resulting
in an injection frequency of 4500 messages each second.
The injected messages have a fixed ID value equal to
the lowest ID found in our dataset (0x1). This attack
scenario is composed of 7 traces. The zero ID DoS attack
is not simulated since the ID 0x0 is not found in the
clean dataset, hence the detection performance against
this attack are the same of the ones achieved against the
ID fuzzing attack.



V. THE DAGA FRAMEWORK

This section introduces the DAGA framework. The DAGA
detection algorithm is described in Section V-A, while the
reference implementations of DAGA used for the feasibility
analysis on the automotive microcontrollers are presented in
Section V-B.

A. Description of the detection algorithm

The DAGA detection algorithm exploits n−gram analy-
sis for detecting anomalies in CAN communications. Each
n−gram used for anomaly detection is composed of the
ordered sequence of CAN message IDs. DAGA only relies
on the CAN message IDs for its detection purposes, without
requiring access to any other field of the CAN data frame. By
using the DAGA framework it is possible to define multiple
detection models, each one characterized by a different value
of the parameter n. Intuitively, we can expect models with
a higher value of n to better represent the normal CAN
traffic, and to achieve better detection performance. However,
increasing the value of the parameter n also increases the
size of the model and the memory requirements to execute an
instance of DAGA. To prevent the inapplicability of DAGA
to automotive microcontrollers due to memory constraints, the
parameter n is kept as a configurable parameter, allowing the
analysis of the trade-off between the memory requirements and
the detection performance. Since the value of the parameter n
does not affect the definition of the algorithm, the detection
algorithm is described generically.

The detection algorithm is composed of two phases. In the
first phase the clean dataset is used for training the detection
model according to the desired value of the parameter n. In
this phase, the algorithm extracts the n−grams from the traffic
traces as sequences of n message IDs in a sliding window fash-
ion. We highlight that DAGA does not differentiate between
“popular” and “unpopular” n−grams, hence their frequency
is not considered. The detection model is composed of all
the unique n−grams that are found in this phase, discarding
all duplicates. The pseudocode for the training phase of the
algorithm is shown in Algorithm 1.

Algorithm 1 Routine for training DAGA with a given value
of the parameter n

1: model← null
2: for trace in dataset do
3: ixe← n
4: while ixe ≤ trace.length do
5: seq ← trace[ixe− n : ixe].CAN_ID
6: if seq 6⊂ model then
7: model.add(seq)
8: end if
9: ixe + +

10: end while
11: end for
12: save(model, n)

In the detection phase the algorithm evaluates the n−grams
from the monitored CAN bus by extracting sequences of

message IDs of length n, with n equal to the same value used
in the training phase. The n−grams extracted from the CAN
communication are compared with the n−grams composing
the detection model. In case the extracted n−gram is not
found in the detection model, then an anomaly is raised. The
detection phase continues in a sliding-window fashion, hence
creating the next n−gram by removing the first ID from the
current n−gram and appending the next ID to it.

The pseudocode for the detection phase of the algorithm is
shown in Algorithm 2.

Algorithm 2 Routine for n−gram membership test used in
the detection phase of DAGA

1: mdl, n← load(model)
2: seq ← null
3: for msg in stream.curr_msg do
4: seq.add_tail(msg.ID)
5: if seq.length == n then
6: if not V alidNGram(seq,mdl) then
7: raise anomaly
8: end if
9: seq.pop_head()

10: end if
11: end for
12: function VALIDNGRAM(sequence,model)
13: if sequence ∈ model then
14: return True
15: end if
16: return False
17: end function

B. Design of DAGA implementations

In this section we present three different prototype imple-
mentations of DAGA. These implementations are designed to
offer a comparable trade-off in terms of computational and
memory requirements. At first, we describe a pre-processing
step that is used by all implementations. Then, we present
the three designs: an implementation based on the binary
lookup algorithm used as a baseline for the comparison of
the other two implementations, a lookup-optimized imple-
mentation based on hash tables and a memory-optimized
implementation based on an original data structure similar to
the sparse trie data structure. A comparison of the performance
of the three implementations deployed on automotive-like
microcontrollers is presented later in Section VII. The different
implementations of DAGA are publicly available online 2.

Symbols notations. We denote the number of unique IDs
within the dataset as u, the size of each ID as IDlen, the
number of n−grams within the dataset used for detection as
size, and the length of each n−gram as n.

Dataset encoding. The baseline size of a model is size×
n × IDlen bits. The value of IDlen equals to 11 bits if the
messages are in the standard format, or 29 bits if the messages
are in the extended format. We propose to encode the ID values

2https://github.com/SECloudUNIMORE/ACS/tree/master/DAGA



as a sequence of progressive integer numbers, which reduces
memory usage of the dataset to size×n×dlog2 ue bits, plus
a lookup table of size u× (IDlen + dlog2 ue) bits. Detection
requires to first convert each ID by using the lookup table,
then to test membership of the n−gram within the dataset.

Baseline implementation: binary lookup. The binary
lookup implementation of DAGA is implemented in the C
programming language. The detection model is implemented
with an array data structure, whose elements are the n−grams
composing the detection model. Since the message IDs are
encoded as a progressive number, it is possible to store all
the different values in a 8-bit unsigned integer (uint8_t),
hence the overall memory usage of the binary lookup detection
model is size×n bytes. The n−grams of the detection model
are sorted in a lexicographic ascending order to enable a
binary lookup on the elements of the detection model. Our
implementation of the binary lookup algorithm follows the
one available on the NIST Dictionary of Algorithms and
Data Structures [52], adapting the comparison to the n−gram
data structure. The computational complexity for the lookup
operation is equal to O(log size).

Lookup-optimized implementation: hash table. The hash
table implementation of DAGA is implemented in the C++
programming language using the std::unordered_set
container, characterized by fast lookup operations on its ele-
ments. Hash tables maintain data within an array of buckets,
and the index of the bucket in which each value is stored
is evaluated with a hash function on the value. Membership
test is operated by re-computing the hash function and by
operating a linear search over the bucket. Although memory
usage seems comparable to the one of the binary lookup
implementation, we observe that an hash table might include
hidden overheads due to unused memory within buckets,
which in turn depend on the quality of the hash function. We
remark that the details about the the memory required for the
std::unordered_set container and the implementation
of the search function using this data structure (which is
implemented through the find method) are highlighted in
the official C++ documentation [53]. The hash table imple-
mentation of DAGA has a computational complexity for the
lookup operation of O(1).

Memory-optimized implementation: sparse trie. As a
memory-optimized implementation we design a search tree,
which we denote as sparse trie, that can be modeled as a trie
where each node includes an encoded CAN ID, and whose size
depends on the actual number of values stored in the trie. The
sparse trie is designed to reduce memory usage with regard to
the following characteristics:

• the height of the trie is the sequence size of the anomaly
detection model;

• the maximum fan-out of each internal node is the number
of CAN IDs, which is 50 for the considered dataset;

• with the exception of the lowest depths, the actual fan-
out of the trie is very small, which is between 1 and 2
on average for depths higher than 2;

• the trie is built once during the training phase of the
model and must only support read operations.

The sparse trie uses approaches related to efficient storage
management, including byte-unaligned data, delta encoding
and run length compression [54]. Moreover, it uses superim-
posed indexing and skip values to achieve practical lookup
timings [54]. Although each of the adopted techniques is not
novel, to the best of our knowledge the design of the sparse trie
as a whole can be considered a special-purpose data structure.
In the following, we overview the design of the sparse trie
and we describe the parameters used to instantiate it within
the considered workload.

Sparse trie design. The sparse trie includes three types
of data, that we denote as sparse values, indexes and skips.
Sparse values are a list of arrays, where each array includes
the traversals of all the values stored at a certain depth
level of the trie from left to right in a sparse fashion, that
is, without including empty nodes. Each sparse value array
stores CAN IDs by using a fixed-size representation in a
byte-unaligned fashion, where the size of each value is the
ceil of the binary logarithm of the number of symbols that
must be represented. Indexes include information to point at
the different sparse values nodes for lookup operations. For
space efficiency, we maintain them in a compressed fashion
by representing positions as delta-encoded values and by
compressing them with run length compression. We discuss
sizes and byte-alignment strategies of indexes below, when
we compute the specific parameters used for the used dataset.
Skips are aggregated sums of indexes values, and allow to
improve the efficiency of lookup on sparse values and on
indexes. Although theoretically they are not mandatory to build
the data structure, they are necessary to achieve acceptable
lookup speeds.

We overview the algorithms used to build the sparse trie
and to lookup a sequence. For the sake of clearness, we do
not consider byte-unaligned data and run length compression
strategies.

Algorithm 3 shows how to build indexes and sparse values
by using an existing trie data structure (Line 4). We assume
existence of the trie.traverse_children(depth) routine of the
trie to retrieve a list where each element is the set of all
the non-empty children of a node at depth depth (Line 7).
Then, the list is flattened to be stored as an array within the
sparse values list (Line 12). Delta-encoded indexes are built
by storing all the sizes of children sets (Line 9).

Algorithm 4 shows how to build skips. For simplicity, the
proposed function takes as input indexes and sparse values
arrays associated to a depth of the trie, and can be used as-is
with all the due depths. The function is quite simple as it only
provides a way to aggregate sums of multiple delta-encoded
indexes. However, we observe that an important design choice
is the size of skips, that we design as the square root of the
size of sparse values to optimize lookup time (Line 6). Similar
sizing approaches are typical of other superimposed indexing
structures, such as those used in vEB trees [55].

Algorithm 5 shows the lookup operation for verifying
membership of a sequence in the sparse trie. The operation is
an iterative procedure that descends from the root to the leafs
of the sparse trie for each matched symbol. For each iteration,
the procedure includes three parts: usage of skips (Lines 7-



Algorithm 3 Routine for building the sparse trie structure
1: function BUILD_SPARSE_TRIE(model, n)
2: indexes← list()
3: sparse_values← list()
4: trie = Trie(model)
5: for depth = 1 to (n− 1) do
6: indexes_i← list()
7: nodes_list← trie.traverse_children(depth)
8: for nodes in nodes_list do
9: indexes_i.append(len(nodes))

10: end for
11: indexes.append(indexes_i)
12: sparse_values.append(flattenize(nodes_list))
13: end for
14: return (indexes, sparse_values)
15: end function

Algorithm 4 Routine for building skip data structures for a
single layer of the sparse trie
1: function BUILD_SKIPS(indexes, sparse_values)
2: skip_indexes← list()
3: skip_values← list()
4: sum_indexes← 0
5: sum_values← 0
6: skip_size← b

√
len(sparse_values)c

7: for i = 0 to (len(indexes)− 1) do
8: next_size← (sum_indexes+ indexes[i])
9: if next_size > skip_size then

10: skip_indexes.append(sum_indexes)
11: skip_values.append(sum_values)
12: sum_indexes← indexes[i]
13: sum_values← sparse_values[i]
14: else
15: sum_indexes← next_size
16: sum_values← (sum_values+ sparse_values[i])
17: end if
18: end for
19: if sum_indexes > 0 then
20: skip_indexes.append(sum_indexes)
21: skip_values.append(sum_values)
22: end if
23: return skip_size, skip_indexes, skip_values
24: end function

14), usage of indexes (Lines 14- 18), search over sparse
values (Lines 18- 28). The worst case on asymptotic memory
cost and asymptotic average computational complexity are
O (size · log(u)) and O

(√
size

)
, respectively. We remark that

these worst cases are evaluated by considering a scheme that
does not use compression techniques. As typical for data
structures that use compression techniques, the performance of
the proposed scheme vary depending on the characteristics of
the data [54]. Thus, we evaluate the experimental performance
of the sparse trie with the considered dataset in Section VII.

Parameters of compression strategies. We denote as
symbol size the number of bits used to store symbols, and
as rle size the number of bits used to store counters in run-
length compression. The symbol size value that allows to
minimize memory usage can be computed as dlog2 (s)e. Since
the number of unique CAN IDs in the considered dataset
is 50, the rle size value in our implementation is equal to
6. The best rle size value can be computed experimentally
to optimize the efficiency of run-length encoding. In our
design, compressed indexes are stored as couples of values
(rle_counter, symbol). Thus, the value of rle size might affect

Algorithm 5 Routine for sparse trie sequence membership
verification
1: function VERIFY_STREE(seq, n, indexes, sparse_values, skips)
2: skip_sizes← skips.skip_sizes
3: skip_indexes← skips.skip_indexes
4: skip_values← skips.skip_values
5: i_seek ← seq[0]
6: for i = 0 to (n− 1) do
7: i_skip← 0
8: v_seek ← 0
9: quotient, residuous← divmod(i_seek, skip_sizes[i])

10: i_seek ← residuous
11: for j = 0 to (quotient · skip_sizes[i]− 1) do
12: i_skip← (i_skip+ skip_indexes[i][j])
13: v_seek ← (v_seek + skip_values[i][j])
14: end for
15: for j = i_skip to (i_skip+ i_seek) do
16: v_seek ← (v_seek + indexes[i][j])
17: end for
18: node_size← indexes[i][i_skip+ i_seek + 1]
19: found← False
20: for j = 0 to (node_size− 1) do
21: if sparse_values[i][v_seek + j] = seq[i+ 1] then
22: found← True
23: break
24: end if
25: end for
26: if found 6= True then
27: return False
28: end if
29: i_seek ← (v_seek + j)
30: end for
31: return True
32: end function

the alignment of the rle counter values, which is symbol
size plus rle size, and thus the speed of lookup operations.
Experimental evaluations showed that the best rle size value
to optimize memory usage with the considered dataset would
be 3. However, we decide to set it to 2 because in our
experimental setting, where symbol size is equal to 6, it allows
to build byte-aligned packets that allows faster lookup times.
Memory usage is slightly higher, but it does not prevent usage
of the scheme on any platform, and significantly improves
lookup times.

VI. EXPERIMENTAL EVALUATION

The detection performance of DAGA are evaluated by
means of F−measure, which is a statistical index representing
the accuracy of a test. The F−measure is evaluated using the
precision (i.e. the number of correctly identified anomalies on
the total of detected anomalies, hence including also the false
positives) and the recall (i.e. the number of correctly identified
anomalies on the total of actual anomalies, hence including
the false negatives). Being tp, fp, and fn the number of
true positives (i.e. non-legit instances correctly identified as
anomalies), false positives (i.e. legit instances erroneously de-
tect as anomalies), and false negatives (i.e. non-legit instances
erroneously identified as legit), the precision is evaluated as

tp
tp+fp , the recall is evaluated as tp

tp+fn , while the F−measure
is evaluated as 2 ∗ precision∗recall

precision+recall . The F−measures index
ranges in the interval [0, 1], where values close to 0 denotes
low detection capabilities and values close 1 denotes high
detection capabilities.



The DAGA detection algorithm is tested against the infected
dataset presented in Section IV. Different values of the pa-
rameter n (from 1 to 10) are used to train different detection
models to compare their results. Higher values of n are not
tested since it is possible to achieve a F−measure ≥ 0.99
with values of n = 10, while further increments of n do not
lead to an significant increment of the F−measure.

A. Single ID replay

Figure 4 shows the detection performance of DAGA against
the single ID replay attack. The y-axis of Figure 4 represents
the F−measure evaluated using models created with a par-
ticular value of the parameter n, depicted on the x-axis. The
four lines of Figure 4 represent the different message IDs used
for the attack generation (see Table I). In particular, the green
line represents the results achieved against the injection of the
top message, the cyan line represents the results against the
injection of the mid message, while the orange and the red
lines represent the results against the injection of the low
and not messages, respectively. The results are presented
by means of box-plot to highlight the variance against the
different simulated scenarios, while solid lines connect the
median F−measure of each set of experiments to highlight
the trend for growing values of n. For readability purposes
the outliers of the box-plots are omitted.
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Fig. 4: F−measure achieved by DAGA against the single ID
replay attack

Figure 4 shows that DAGA achieves the highest perfor-
mance against the not message. However, using detection
models created with higher values of n improves the detection
performance against all the attack scenarios. These results
also show that for the injection of non-periodic messages
the detection performance reaches high values of F−scores
(≥ 0.9) starting with n = 6, while in the other attack
scenarios the detection performance are lower. In particular,
the maximum F−measure evaluated using n−grams of size
n = 10 against the injection of the low, mid, and top message
are F = 0.9669, F = 0.9511, and F = 0.9036, respectively.
These results are a clear improvement with respect to the state-
of-the-art. Results presented in [56] are the same of a DAGA

instance trained with n = 2. Hence, with its ability to increase
the value of n, DAGA is able to achieve overall better detection
results in this attack scenarios. The results achieved by DAGA
also outperforms the detection algorithm based the CAN bus
entropy [34], [57], because these approaches are only effective
against high volume attacks involving the injection of hundred
of messages per second.

B. Ordered sequence replay

The detection performance of DAGA against the replay
of an ordered sequence of legit messages are presented in
Figure 5. Figure 5 shows the F−measure evaluated in the
different tests by comparing the length of the attack (y-
axis) with the value of the parameter n used for the model
creation (x-axis). The cells represent the median value of the
F−measures achieved over different tests. The colors of the
cells are used to highlight the range of the F−measure, where
shades of red represent poor detection results (F−measure
≤ 0.5), shades of cyan are used to represent acceptable results
(0.5 < F−measures ≤ 0.8), and shades of green represent
high detection results (F−measure > 0.8). The right column
of Figure 5 summarizes the ranges of F−measure presented
in the left matrix.
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Fig. 5: Median F−measure achieved by DAGA against the
ordered sequence replay attacks

From the analysis of the detection results presented in
Figure 5 it is possible to notice that by either increasing
the value of the parameter n or by decreasing the length of
the injected sequence the detection performance of DAGA
increases. Intuitively, longer injected sequences are more dif-
ficult to detect, especially for instances of DAGA that rely on
smaller values of n. Since the injected sequence is composed
of valid messages, it is possible to detect anomalies only in
the transitions between the normal traffic and the injected se-
quence, thus resulting in the detection of 2 anomalies for each
attack in the best case. Moreover, models created with smaller
values of n have a more limited knowledge of the evolution
over time of normal message sequences, thus resulting in a
higher likelihood of missing the boundaries of the injected
sequence. We remark that for n = 10 DAGA achieves median



values of F−measure higher than 0.98. While this attack has
been documented in [8], to the best of our knowledge this
is the first paper that evaluates an intrusion detection system
against it, so we cannot directly compare our performance
against previous work. However we observe that entropy-based
anomaly detectors [34], [57] are unable to detect these low-
volume attacks. Finally, although detection algorithms based
message timings [12], [58] seem a suitable alternative for this
type of attack, they are only applicable to periodic messages.
Hence, an attacker injecting an ordered sequence of non-
periodic messages could easily evade detection. On the other
hand, DAGA does not rely on message timings and cannot be
evaded by injecting non-periodic messages (see Section VI-A).

C. Arbitrary sequence replay

The detection performance of DAGA against the replay of
an arbitrary sequence of legit messages are presented in Fig-
ure 6. The results are shown using the same structure already
described for the previous attack case, depicting the median
F−measure evaluated over different tests and comparing the
results according to the length of the injected sequence (y-
axis) and the value of the parameter n (x-axis).
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Fig. 6: Median F−measure achieved by DAGA against the
arbitrary sequence replay attacks

In case of the injection of arbitrary sequences the detec-
tion performance are mostly dependent from the value of
the parameter n, where higher detection performance are
achieved with higher values of n. We also remark that the
length of the injected sequence does not impact the overall
detection performance. The experimental evaluation of DAGA
against this attack scenario shows that models created with
smaller values of n are able detect the injected sequence more
consistently compared to the previous scenario despite their
limited knowledge of the evolution over time of normal CAN
communication.

We remark that for n ≥ 5 DAGA achieves median values
of F−measure higher than 0.95, while for n = 10 it achieves
a median value of F−measure of 0.99. While this attack has
been also documented in [8], to the best of our knowledge this
is the first paper that evaluates an intrusion detection system

against it, so we cannot directly compare our performance
with previous work. We remark however that the limitations
of the previous proposals highlighted for the ordered sequence
replay attack also apply to this attack scenario.

D. ID Fuzzing

The detection performance of DAGA against the injection
of an invalid ID are always equal to F = 1.0 regardless of
the value of n. In case the detection model is missing a valid
ID, the detection performance of DAGA will inevitably skew
to lower F−measure values. However, we remark that for the
particular case of n = 1 it is possible to train the detection
model using the formal vehicle’s specifications included in
DBC files. By having access to the full specifications of the
vehicle (which are often shared by car makers with suppliers
under non disclosure agreements) it is possible to create a
detection model that is able to achieve 0 false positives against
this attack scenario. In case the vehicle specifications are not
accessible, it is possible to deploy different methodologies
(such as the one presented in [59]) to map the message IDs
of a target vehicle by exploiting CAN remote frames.

E. Lowest ID Denial-of-Service

The detection performance of DAGA against the lowest ID
DoS attack are presented in Table II. The rows of the table
represent the value of the parameter n, while the columns
represent the different attack simulations (see Section IV).

n 1 2 3 4 5 6 7

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.9971 0.9971 0.9970 0.9966 0.9964 0.9970 0.9970
3 0.9991 0.9990 0.9991 0.9987 0.9990 0.9990 0.9991
4 0.9994 0.9993 0.9994 0.9993 0.9994 0.9993 0.9994
5 0.9996 0.9994 0.9996 0.9996 0.9998 0.9995 0.9995
6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE II: F−measure achieved by DAGA against the Lowest
ID DoS attack

Table II shows that DAGA achieves near-optimal perfor-
mance with a minimum value of n = 2, while optimal
results (F = 1.0) are achieved for any value of n ≥ 6.
Since this attack scenario is simulated by injecting a high
volume of CAN messages, detection algorithms based on the
analysis of the entropy of the CAN bus [34], [57] are also
good candidates for the detection of this attack. However,
the detection results presented in [57] show that to achieve
a consistent detection of the DoS attack it is necessary to
inject at least 100 messages per second. Since the attack
frequency used for this attack scenario is of 90 messages per
second (see Section IV), the algorithm presented in [57] will
struggle to achieve consistent detection results, thus making
DAGA the best detection algorithm against DoS. Timing-
based approaches would be inapplicable for the vehicle used
to collect the dataset because the message with the lowest ID
is non-periodic.



VII. IMPLEMENTATION ON REFERENCE ARCHITECTURES

In this section we discuss the performance of the three
implementations of DAGA presented in the Section V-B.
First, we describe the automotive-like boards considered in
our evaluation, then we analyze the feasibility of these im-
plementations on the boards in terms of available memory
(Section VII-A) and lookup times (Section VII-B). Finally,
real-time applicability for the different implementations of
DAGA is discussed in Section VII-C. We remark that the
three reference implementations of DAGA are prototypes
used for evaluating the feasibility of DAGA on automotive
microcontrollers. These tests are executed in a laboratory
environment for safety purposes. Moreover, despite the DAGA
prototypes are not tested on the real vehicle, we remark that
by deploying any of the implementations on an automotive
board equipped with any of the reference microcontrollers it
is possible to achieve the same results presented in this section.
To the best of our knowledge, this is the first paper in which
different implementations of the same detection algorithm are
tested on multiple automotive-grade boards.

We consider the five embedded boards presented in Ta-
ble III: each row describes a different board, while the columns
highlights the characteristic of the board that are relevant for
the analysis. The first column shows the label used to address
the boards, the second and third columns describe the names of
the microcontrollers and the clock speed at which they operate,
while the fourth and fifth columns describe the available flash
and RAM memory.

The boards used in our evaluation share the same archi-
tecture of automotive microcontrollers produced by STMicro-
electronics [60] and NXP [61]. The micro #1 and #2 boards
represent very simple microcontrollers (such as simple sensors
and actuators) and are used as a low boundary rather than a
representative hardware platform. The micro #3 board repre-
sents common automotive microcontroller, such as the SPC5
family produced by STMicroelectronics or the MPC5xxx fam-
ily produced by NXP, both popular in automotive applications.
The micro #4 and #5 boards are similar to top-tier automotive
boards used for infotainment or ADAS system, such as the
i.MX 8QuadPlus family produced by NXP.

Label Microcontroller Clock Flash RAM

micro #1 ATmega328P 16MHz 32 KB 2 KB
micro #2 ATmega2560 16MHz 256 KB 8 KB
micro #3 M3 (AT91SAM3X8E) 84MHz 512 KB 96 KB
micro #4 ARMv8 - Cortex A53 1.4 GHz 16 GB* 1 GB
micro #5 ARMv8 - Cortex A72 1.5 GHz 16 GB* 4 GB

* expandable memory.

TABLE III: Technical specifications of the automotive-like
boards

A. Memory requirements

The memory requirements of the detection models of the
different implementations of DAGA are summarized in Ta-
ble IV. The rows of the table show, for each value of the
parameter n, the total number of unique n−grams and the
memory footprint of the data structure used for the imple-
mentations of DAGA.

n n−grams Binary lookup Hash table sparse trie

2 1050 2.1 KB 57.49 KB 901 B
3 14945 44.84 KB 898.52 KB 13.64 KB
4 103889 415.56 KB 5.06 MB 111.88 KB
5 336048 1.69 MB 17.87 MB 479.13 KB
6 690370 4.15 MB 36.54 MB 1.28 MB
7 1128043 7.90 MB 65.42 MB 2.57 MB
8 1640341 13.13 MB 81.82 MB 4.39 MB
9 2199085 19.80 MB 129.92 MB 6.77 MB

10 2766325 27.67 MB 148.07 MB 9.68 MB

TABLE IV: Memory footprint of the implementations of
DAGA

From the comparison of the memory requirements and the
available flash memory of the microcontrollers, it is possible
to determine that the micro #4 and #5 boards support all the
implementations of DAGA, while the micro #1~#3 boards can
only support a limited set of configurations. The binary lookup
implementation is supported with n up to 2, 3, and 4 by the
micro #1, #2, and micro #3 boards, respectively. The sparse
trie implementation is supported with n up to 3, 4 and 5
by the micro #1, #2, and micro #3 boards. The hash table
implementation is supported with n = 2 by the micro #2
and #3 boards, but it cannot be executed on the micro #1
board due to memory restrictions. Moreover, since the hash
table implementation of DAGA is supported only with a single
configuration on the micro #1~#3 boards, the comparison of
the lookup times for this implementation is limited to the only
micro #4 and #5 boards.

B. Lookup time

The lookup times of each implementation of DAGA on the
micro #1~#3 and micro #4 and #5 boards are shown in Table V
and VI, respectively. The lookup times depicted in both tables
show the average and standard deviation achieved repeating
the lookup operation of a valid n−gram 1.000.000 times. From
the comparison of the lookup times evaluated on the micro
#1~#3 boards it is clear that fastest timings are achieved using
the binary lookup implementation deployed on the micro #3
board. Despite the sparse trie implementation achieves higher
lookup times, it is necessary to highlight that it is possible
to deploy detection models created with higher values of
the parameter n, hence achieving better detection results. By
comparing the lookup times on the micro #4 and #5 boards it
is possible to notice that the sparse trie implementation offers
the best lookup times for lower values of the parameter n,
while the hash table structure is the fastest data structure for
higher values of n.

C. Real-time application of the DAGA implementations

The real-time requirements are defined by considering the
minimum inter-arrival time of the CAN messages, hence
allowing DAGA to analyze a single n−gram in this time
window. The inter-arrival times between consecutive messages
on our dataset are extremely sparse, ranging from a minimum
of 2 microseconds to an average of approximately 600 mi-
croseconds. Hence, we define two operational scenarios to take
advantage of this variance.



Binary lookup

micro #1 [µs] micro #2 [µs] micro #3 [µs]
n avg dev avg dev avg dev

2 54.08 0.0740 54.65 0.0762 8.68 0.0100
3 n/a n/a 95.65 0.2436 16.05 0.0370
4 n/a n/a n/a n/a 20.06 0.0413

sparse trie

micro #1 [µs] micro #2 [µs] micro #3 [µs]
n avg dev avg dev avg dev

2 167.04 39.6438 166.98 39.6435 21.78 7.8644
3 501.27 109.2247 501.84 109.2257 50.70 14.3786
4 n/a n/a 1121.12 248.3368 133.40 42.7876
5 n/a n/a n/a n/a 315.36 84.1533

TABLE V: Lookup times of the implementations deployed on
the micro #1~#3 boards

micro #4 [µs] micro #5 [µs]
n avg dev avg dev

B
in

ar
y

lo
ok

up

2 4.12 0.0813 2.01 0.0300
3 5.57 0.1228 2.63 0.0513
4 6.53 0.1623 3.05 0.0870
5 7.14 0.1840 3.38 0.0967
6 7.52 0.1663 3.54 0.0862
7 7.85 0.1483 3.67 0.0734
8 7.92 0.1566 3.73 0.0846
9 8.07 0.1143 3.80 0.0733
10 8.20 0.1943 3.85 0.07867

H
as

h
ta

bl
e

2 0.89 0.0809 0.62 0.0565
3 1.01 0.1402 0.68 0.1096
4 1.07 0.1116 0.72 0.0795
5 1.09 0.0898 0.74 0.0877
6 1.17 0.0881 0.78 0.0799
7 1.26 0.1029 0.77 0.0892
8 1.34 0.1010 0.82 0.0789
9 1.36 0.0466 0.84 0.0708
10 1.45 0.6760 0.85 0.0593

sp
ar

se
tr

ie

2 0.05 0.7634 0.02 0.5264
3 0.26 0.9419 0.03 0.5434
4 1.54 1.2163 0.74 0.6097
5 3.59 1.8362 1.69 0.8876
6 6.59 2.9241 3.24 1.1953
7 10.53 4.3617 5.19 1.8016
8 15.32 5.7852 7.63 2.5261
9 20.59 7.2645 10.28 3.2965
10 25.99 8.9467 13.15 4.2205

TABLE VI: Lookup times of the implementations deployed
on the micro #4 and #5 boards

In the first operational scenario, we require the micro-
controllers to evaluate the n−grams within the minimum
inter-arrival time of the messages (i.e. with strict real-time
requirements). From the results of the lookup times evaluated
on the different boards presented in Table V and VI, the
only implementations that satisfy this requirement are the hash
table implementation on both micro #4 and #5 boards, and the
sparse trie implementation deployed on the the same boards
with a value of n ≤ 4 and n ≤ 5, respectively.

In the second operational scenario, we consider a relaxed
bulk approach where each platform must test all messages
within a particular time window. This approach allows to
leverage the average timings between consecutive messages
in small time frames, although a buffer is required to store the
unprocessed messages in the reference time window. To this
aim, we analyzed the minimum time windows required for

the applicability of the boards in the relaxed bulk approach.
The results of this analysis are presented in Table VII in
which, for each implementation of DAGA on the supported
boards, the required time window and the required buffer
size are shown. These results show that in the worst scenario
(i.e. the highest lookup time experimentally evaluated on the
boards) the required time windows for the binary lookup
implementation of DAGA range from 50 microseconds on the
micro #5 board (with n = 10, buffer size of 12 messages) to 3
milliseconds on the micro #2 board (n = 3, buffer size of 28
messages), while with the sparse trie implementation the time
windows range from 300 microseconds on the micro #4 board
(n = 10, buffer size of 17 messages) to 50 milliseconds on
both micro #1 and #2 boards (n = 3 and n = 4 respectively,
buffer size of 98 messages).

Binary Lookup

time window messages lookup [µs] n

micro #1 2ms 22 54.08 2
micro #2 3ms 28 95.65 3
micro #3 400µs 16 20.06 4
micro #4 200µs 16 8.20 10
micro #5 50µs 12 3.85 10

sparse trie

time window messages lookup [µs] n

micro #1 50ms 98 501.27 3
micro #2 50ms 98 1121.12 4
micro #3 20ms 59 315.36 5
micro #4 500µs 18 25.99 10
micro #5 300µs 17 13.15 10

TABLE VII: Highest time windows and buffer sizes for the
relaxed bulk application of the DAGA implementations

We remark that in the first operational scenario it is possible
to detect anomalies in the CAN traffic after each message
is sent, while the second operational scenario allows the
detection of anomalies within a predictable delay equal to the
used time window.

As a final consideration, despite the applicability of the
proposed implementations of DAGA on micros #1~#3 seems
limited, by comparing the supported implementations with
their detection performance against the single ID replay at-
tack (presented in Section VI-A) it is possible to achieve
F−measures equal to 0.75, 0.8, and 0.85 on micro #1, #2,
and #3 respectively, which are comparable or higher than the
current state-of-the-art [34], [56], [58]. Against the ordered
sequence replay attack (presented in Section VI-B) it is
possible to achieve F−measures in the 0.7 − 0.8, 0.8 − 0.9,
and 0.8−0.9 range on micro #1, #2, and #3 respectively, while
against the the arbitrary sequence replay attack (presented in
Section VI-C) the results are in the 0.8 − 0.9, 0.9 − 1.0, and
0.9−1.0 range on micro #1, #2, and #3 respectively. Moreover,
against the lowest ID DoS attack scenario is it possible to
achieve F−measures higher than 0.99 with all the three mi-
cros, reaching almost perfect F−measures with micro #3 and
n = 6 (F = 0.9998). To the best of our knowledge, DAGA is
the first detection algorithm for CAN communications tested
on multiple and different platforms, deployable on boards with
extremely constrained resources (such as micros #1~#3), and



able to achieve detection performance that are comparable with
the current state-of-the-art against all the considered attack
scenarios.

VIII. CONCLUSION

This paper presents DAGA, an anomaly detection algorithm
based on the analysis of n−grams of CAN message IDs
transmitted over in-vehicle networks. Differently from pre-
vious proposals, DAGA is designed for being applicable to
resource-constrained microcontrollers, allowing the definition
of multiple detection models characterized by different mem-
ory footprints. We present three reference implementations
of DAGA that allow us to explore the trade-off between
detection performance, detection time and hardware require-
ments, such as computational power and available memory. We
experimentally evaluate these implementations by deploying
DAGA on five different automotive-like boards, representing
microcontrollers used in automotive application and charac-
terized by similar computational power and available mem-
ory. Our evaluation considers five attack scenarios described
in the related literature. Results show that DAGA achieves
detection performance that are better than the related work
when deployed on the more powerful hardware platforms.
Moreover, DAGA can be executed on microcontrollers that
are not be able to load and execute the vast majority of in-
vehicle IDS approaches already presented in literature. As a
final contribution, we publicly release both the source code of
the three DAGA implementations and the full dataset used for
the evaluation of DAGA. This dataset is composed of more
than 50 hours of CAN traffic, including several attack families
and variants. This dataset enables other researchers to replicate
our results and foster future research in the automotive cyber-
security domain.
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